
\qquad
\qquad

NORMAL DISTRIBUTIONS

\qquad
If a continuous random variable has a distribution with a graph that is symmetric and bell- Curve is bell-shaped
\qquad shaped and can be described by and symmetric the equation

$$
y=\frac{e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}}{\sigma \sqrt{2 \pi}}
$$

we say that it has a normal distribution.

REMARK

\qquad

We will NOT need to use the formula on the \qquad previous slide in our work. However, it does show us one important fact about normal \qquad distributions:

Any particular normal distribution is determined by two parameters:
the mean, μ, and
\qquad
the standard deviation, σ.

UNIFORM DISTRIBUTIONS

A continuous random variable has a uniform distribution if its values are spread evenly over the range of possibilities. The graph of a uniform distribution results in a rectangular shape.

EXAMPLE

Suppose that a friend of yours is always late. Let the random variable x represent the time from when you are suppose to meet your friend until he arrives. Your friend could be on time $(x=0)$ or up to 10 minutes late $(x=10)$ with all possible values equally likely.

This is an example of a uniform distribution and its graph is on the next slide.

EXAMPLE
Suppose that a friend of yours is always late.
Let the random variable x represent the time
from when you are suppose to meet your friend
until he arrives. Your friend could be on time
$(x=0)$ or up to 10 minutes late $(x=10)$ with
all possible values equally likely.
This is an example of a uniform distribution
and its graph is on the next slide.

\qquad

DENSITY CURVES

A density curve (or probability density function) is a graph of a continuous probability distribution. It must satisfy the following properties:

1. The total area under the curve must equal 1.
2. Every point on the curve must have a vertical height that is 0 or greater. (That is, the curve cannot fall below the x-axis.)

IMPORTANT CONCEPT

Because the total area under the density curve is equal to 1 , there is a correspondence between area and probability.

DENSITY CURVES
A density curve (or probability density
function) is a graph of a continuous
probability distribution. It must satisfy the
following properties:
1. The total area under the curve
must equal 1 .
2. Every point on the curve must
have a vertical height that is 0 or
greater. (That is, the curve cannot
fall below the x-axis.)

IMPORTANT CONCEPT
Because the total area under
the density curve is equal to 1,
there is a correspondence
between area and probability.

\qquad

EXAMPLE

Suppose that a friend of yours is always late. Let the random variable x represent the time from when you are suppose to meet your friend until he arrives. Your friend could be on time $(x=0)$ or up to 10 minutes late $(x=10)$ with all possible values equally likely. Find the probability that your friend will be more than 7 minutes late.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

THE STANDARD NORMAL DISTRIBUTION

The standard normal distribution is a normal probability distribution that has a mean $\mu=0$ and a standard deviation $\sigma=1$, and the total \qquad area under the curve is equal to 1 .

COMPUTING PROBABILITIES FOR THE STANDARD NORMAL DISTRIBUTION

We will be computing probabilities for the standard normal distribution using:
\qquad

1. Table A-2 located inside the back cover of \qquad the text, the Formulas and Tables insert card, and Appendix A (pp. 560-561). \qquad
2. The TI-83/84 calculator.

COMMENTS ON TABLE A-2

1. Table A-2 is designed only for the standard normal distribution
2. Table A-2 is on two pages with one page for negative z scores and the other page for positive z scores.
3. Each value in the body of the table is a cumulative area from the left up to a vertical boundary for a specific z score.

COMMENTS (CONCLUDED)

4. When working with a graph, avoid confusion between z scores and areas.
\underline{z} score: Distance along the horizontal scale of the standard normal distribution; refer to the leftmost column and top row \qquad of Table A-2.
Area: Region under the curve; refer to \qquad the values in the body of the Table A-2.
5. The part of the z score denoting hundredths
\qquad is found across the top row of Table A-2.

NOTATION

$P(a<z<b)$ denotes the probability that the z score is between a and b.
$P(z>a) \quad$ denotes the probability that the z score is greater than a.
$P(z<a) \quad$ denotes the probability that \qquad the z score is less than a.

COMPUTING PROBABILITIES USING TABLE A-2

1. Draw a bell-shaped curve corresponding to the area you are trying to find. Label the z score(s).
2. Look up the z score(s) in Table A-2.
3. Perform any necessary subtractions.

FINDING THE AREA BETWEEN TWO z SCORES

To find $P(a<z<b)$, the area between a and b :
\qquad
\qquad

1. Find the cumulative area less than a; that \qquad is, find $P(z<a)$.
2. Find the cumulative area less than b; that \qquad is, find $P(z<b)$.
3. The area between a and b is \qquad $P(a<z<b)=P(z<b)-P(z<a)$.

FINDING PROBABILITIES (AREAS) USING THE TI-83/84

To find the area between two z scores, press 2nd VARS (for DIST) and select 2:normalcdf(. Then enter the two z scores separated by a comma.

To find the area between -1.33 and 0.95 , your calculator display should look like:
normalcdf(-1.33,0.95)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

FINDING PROBABILITIES (AREAS) USING THE TI-84 NEW OS

To find the area between two z scores, press 2nd VARS (for DIST) and select 2:normalcdf(. Then enter the two z scores separated by a comma.

To find the area between -1.33 and 0.95 , your calculator display should look like:

| \quad normalcdf |
| :--- | :--- |
| lower: -1.33 |
| upper: 0.95 |
| u:0 |
| $\sigma: 1$ |
| Paste |
| |
| |
| |

NOTES ON USING TI-83/84 TO COMPUTE PROBABILITIES

- To compute $P(z<a)$, use normalcdf(-1E99,a)	```\```
- To compute $P(z>a)$, use normalcdf($a, 1 \mathrm{E} 99$)	```lower:A upper:1E99 \mu:0 \sigma:1```

PROCEDURE FOR FINDING A z SCORE

 FROM A KNOWN AREA USING TABLE A-21. Draw a bell-shaped curve and identify the region that corresponds to the given probability. If that region is not a cumulative region from the left, work instead with a known region that is cumulative from the left.
2. Using the cumulative area from the left \qquad locate the closest probability in the body of Table A-2 and identify the \qquad corresponding z score.

FINDING A z SCORE CORRESPONDING TO A KNOWN AREA USING THE TI-83/84

To find the z score corresponding to a known area, press 2nd VARS (for DIST) and select 3:invNorm(. Then enter the total area to the left of the value.

To find the z score corresponding to 0.6554 , a cumulative area to the left, your calculator display should look like:
invNorm(.6554)

FINDING A z SCORE FROM AN AREA ON TI-84 NEW OS

To find the z score corresponding to a known area, press 2nd VARS (for DIST) and select 3:invNorm(. Then enter the total area to the left of the value.

To find the z score corresponding to 0.6554, a cumulative area to the left, your calculator display should look like:

CRITICAL VALUES

For the standard normal distribution, a critical \qquad value is a z score on the border line separating the z scores that are significantly low or significantly high.

NOTATION: The expression z_{α} denotes the z score with an area of α to its right. (α is the \qquad Greek lower-case letter alpha.)
\qquad

```
\mu:0
Tail: LEFT CENTER RIGHT
```

\qquad
\qquad
\qquad
\qquad
\qquad

