
$\qquad$
$\qquad$

| WAITING TIMES AT DIFFERENT BANKS |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{l}\text { Jefferson Valley Bank } \\ \text { (single waiting line) }\end{array}$ | 6.5 | 6.6 | 6.7 | 6.8 | 7.1 | 7.3 | 7.4 | 7.7 | 7.7 | 7.7 |
| Bank of Providence (multiple waiting lines) | 4.2 | 5.4 | 5.8 | 6.2 | 6.7 | 7.7 | 7.7 | 8.5 | 9.3 | 10.0 |
| All the measures of center are equal for both ban |  |  |  |  |  |  |  |  |  |  |
| Mean $=7.15$ min |  |  |  |  |  |  |  |  |  |  |
| Median $=7.20 \mathrm{~min}$ |  |  |  |  |  |  |  |  |  |  |
| Mode $=7.7$ min |  |  |  |  |  |  |  |  |  |  |
| Midrange $=7.10 \mathrm{~min}$ |  |  |  |  |  |  |  |  |  |  |

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## RANGE

$\qquad$
The range of a set of data values is the difference between the highest value and the lowest value.
range $=($ maximum data value $)-($ minimum data value)

## EXAMPLE:

$\qquad$
$\qquad$ Bank of Providence range $=10.0-4.2=5.8 \mathrm{~min}$

## STANDARD DEVIATION FOR A SAMPLE

The standard deviation of a set of sample values, denoted by $s$, is a measure of how much the data values deviate away from the mean

## EXAMPLE

Use both the regular formula and shortcut formula to find the standard deviation of the following.
$\begin{array}{llll}3 & 7 & 4 & 2\end{array}$

## STANDARD DEVIATION FORMULAS

Sample Standard
Deviation

## Shortcut Formula

 for SampleStandard Deviation

$$
s=\sqrt{\frac{n \sum\left(x^{2}\right)-\left(\sum x\right)^{2}}{n(n-1)}}
$$

$\qquad$

| EXAMPLE |
| :--- |
| Use both the regular formula and shortcut <br> formula to find the standard deviation of the <br> following. <br> 3 |

## PROPERTIES OF THE STANDARD DEVIATION

- The standard deviation is a measure of variation of all values from the mean.
- The value of the standard deviation $s$ is never negative. It is zero only when all of the data values are the same number.
- Larger values of $s$ indicate greater amounts of variation.
- The standard deviation $s$ can increase dramatically with the inclusion of one or more outliers.
- The units of the standard deviation $s$ (such as minutes, feet, pounds) are the same as the units of the original data values.
- The sample standard deviation $s$ is a biased estimator of the population standard deviation $\sigma$, which means that the values of the sample standard deviation do not center around the value of $\sigma$.


## STANDARD DEVIATION OF A POPULATION

The standard deviation for a population is denoted by $\sigma$ and is given by the formula

$$
\sigma=\sqrt{\frac{\sum(x-\mu)^{2}}{N}}
$$

## FINDING THE STANDARD DEVIATION

 ON THE TI-83/841. Press STAT; select 1:Edit....
2. Enter your data values in L1. (You may enter the values in any of the lists.)
3. Press 2ND, MODE (for QUIT).
4. Press STAT; arrow over to CALC. Select 1:1-Var Stats.
5. Enter L1 by pressing 2ND, 1.
6. Press ENTER.
7. The sample standard deviation is given by $\mathbf{S x}$. The population standard deviation is given by $\sigma x$.
$\qquad$

## FINDING THE STANDARD DEVIATION ON THE TI-84 WITH NEW OS

1. Press STAT; select 1:Edit....
2. Enter your data values in L1. (You may enter the values in any of the lists.)
3. Press 2ND, MODE (for QUIT).
4. Press STAT; arrow over to CALC. Select 1:1-Var Stats.
5. For "List", enter L1 by pressing 2ND, 1.
6. Leave "FreqList" blank.
7. Highlight "Calculate" and press ENTER.
8. The sample standard deviation is given by $S x$. The population standard deviation is given by $\sigma x$.

## SYMBOLS FOR STANDARD DEVIATION

## Sample

$s \longleftarrow$ textbook
Sx $\longleftarrow$ TI-83/84 Calculators
Population
$\sigma$ $\qquad$ textbook
$\sigma x$ $\qquad$ TI-83/84 Calculators

| EXAMPLE |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Use your calculator to find the standard deviation for waiting times at the Jefferson Valley Bank and the Bank of Providence. |  |  |  |  |  |  |  |  |  |  |
| Jefferson Valley <br> Bank (single <br> waiting line) | 6.5 | 6.6 | 6.7 | 6.8 | 7.1 | 7.3 | 7.4 | 7.7 | 7.7 | 7.7 |
| Bank of Providence (multiple waiting lines) | 4.2 | 5.4 | 5.8 | 6.2 | 6.7 | 7.7 | 7.7 | 8.5 | 9.3 | 10.0 |

## VARIANCE

The variance of set of values is a measure of variation equal to the square of the standard deviation. $\qquad$
sample variance $=s^{2}$
population variance $=\sigma^{2}$

## PROPERTIES OF THE VARIANCE

$\qquad$

- The units of the variance are the squares of the units of $\qquad$ the original data values. (If the original data values are in seconds, the variance will have units of $\mathrm{sec}^{2}$.
- The value of the variance can increase dramatically with the inclusion of one or more outliers. (The variance is not resistant.)
- The value of the variance is never negative. It is zero only when all of the data values are the same number.
- The sample variance is an unbiased estimator of the population variance $\sigma^{2}$.


## ROUND-OFF RULE FOR MEASURES OF VARIATION

## Carry one more decimal place

$\qquad$
than is present in the $\qquad$ original data set.

$$
s=\sqrt{\frac{n\left[\sum\left(f \cdot x^{2}\right)\right]-\left[\sum(f \cdot x)\right]^{2}}{n(n-1)}}
$$

Use the class midpoints as the $x$ values.
NOTE: We will not use this formula but $\qquad$ will use the TI-83/84 calculator.

## FINDING THE STANDARD DEVIATION FROM A FREQUENCY TABLE ON THE TI-83/84

$\qquad$

1. Enter the class midpoints in $\mathbf{L 1}$.
2. Enter the frequencies in L2.
3. Press STAT, arrow over to CALC, and select 1:1-Var Stats.
4. Press L1,L2 followed by ENTER.
5. The sample standard deviation will be $\mathbf{S x}$. The population standard deviation will be $\boldsymbol{\sigma x}$.

## FINDING THE STANDARD DEVIATION

 FROM A FREQUENCY TABLE ON THE TI-84 WITH NEW OS $\qquad$1. Enter the class midpoints in L1.
2. Enter the frequencies in L2.
3. Press STAT, arrow over to CALC, and select 1:1Var Stats. $\qquad$
4. For "List", enter L1.
5. For "FreqList", enter L2.
6. Highlight "Calculate" and press ENTER.
7. The sample standard deviation will be Sx. The $\qquad$ population standard deviation will be $\sigma x$.

## EXAMPLE

Find the sample standard deviation of the following.

| CLASS | FREQUENCY |
| :---: | :---: |
| $1-3$ | 4 |
| $4-6$ | 9 |
| $7-9$ | 6 |

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## RANGE RULE OF THUMB FOR IDENTIFYING SIGNIFICANT VALUES

Significantly low values are ( $\mu-2 \sigma$ ) or lower.
$\qquad$
Significantly high values are $(\mu+2 \sigma)$ or $\qquad$ higher.

Values that are not significant are between $(\mu-2 \sigma)$ and $(\mu+2 \sigma)$.


## RANGE RULE OF THUMB FOR ESTIMATING A VALUE OF THE STANDARD DEVIATION $s$

To roughly estimate the standard deviation, use

$$
s \approx \frac{\text { range }}{4}
$$

where

$$
\begin{gathered}
\text { range }=\binom{\text { maximum data value })}{\text { data value })}(\text { minimum }
\end{gathered}
$$

## EXAMPLES

1. Heights of men have a mean of 69.0 in and a standard deviation of 2.8 in . Use the range rule of thumb to find the limits separating the values that are significantly low and those that are significantly high. In this context, determine if the height 6 ft , 6 in is significantly high.
2. The shortest home-run hit by Mark McGwire was 340 ft and the longest was 550 ft . Use the range rule of thumb to estimate the standard deviation.

## MORE PROPERTIES OF THE STANDARD DEVIATION

The standard deviation measures the variation among the data values.

- Values close together have a small standard deviation, but values with much more variation have a larger standard deviation.
- The standard deviation has the same units of measurement as the original values.
- For many data sets, a value is significant if it differs from the mean by more than two standard deviations.
- When comparing variation in two different data sets, compare the standard deviations only if the data sets use the same scale and units and they have means that are approximately the same.


## THE EMPIRICAL (OR 68-95-99.7) RULE FOR

 DATA WITH A BELL-SHAPED DISTRIBUTIONThe empirical (or 68-95-99.7) rule states that for data sets having a distribution that is approximately bell-shaped, the following properties apply.

- About $68 \%$ of all values fall within 1 standard deviation of the mean.
- About $95 \%$ of all values fall within 2 $\qquad$ standard deviations of the mean.
- About $99.7 \%$ of all values fall within 3 standard deviations of the mean.



## EXAMPLE

A random sample of 50 gas stations in Cook County, Illinois, resulted in a mean price per gallon of $\$ 2.56$ and a standard deviation of $\$ 0.07$. A histogram indicated that the data follow a bell-shaped distribution.
(a) Use the Empirical Rule to determine the percentage of gas stations that have prices within three standard deviations of the mean. What are these gas prices?
(b) Determine the percentage of gas stations with prices between $\$ 2.42$ and $\$ 2.70$, according to the empirical rule.

## CHEBYSHEV'S RULE

The proportion (or fraction) of any set of data lying within $K$ standard deviations of the mean $\qquad$ is always at least $1-\frac{1}{K^{2}}$, where $K$ is any positive number greater than 1 . For $K=2$ and $K=3$, we get the following statements:

- At least $\frac{3}{4}$ (or $75 \%$ ) of all values lie within 2 standard deviations of the mean.
- At least $\frac{8}{9}$ (or $89 \%$ ) of all values lie within 3 three standard deviations of the mean.


## EXAMPLE

A survey of local companies found that the mean amount of travel allowance for executives was $25 \$$ per mile. The standard deviation was $2 \phi$. Find the minimum percentage of data values that will fall between 19\$ and 31\$.

