Section 6.7

Financial Models

COMPOUND INTEREST

The formula for compound interest (interest paid on both principal and interest) is an important application of exponential functions.

The amount A after t years due to a principal P invested at an annual percentage rate (APR) r compounded n times per year is

$$
A=P \cdot\left(1+\frac{r}{n}\right)^{n t}
$$

EXAMPLES

1. Suppose $\$ 1000$ is deposited in an account with an annual percentage rate (APR) of 8%. How much money will be in the account after 7 years if interest is compounded
(a) yearly,
(b) quarterly,
(c) monthly,
(d) daily,
(e) 1000 times a year,
(f) 10,000 times a year?
2. Suppose $\$ 4000$ is deposited in an account with an APR of 6% compounded monthly. How long will it take for there to be $\$ 15,000$ in the account?

CONTINUOUS COMPOUNDING

As you noticed in Example 1 on the previous slide, when the number of compounding periods increases, the accumulated amount also increases but appears to approach some value. As the number of compounding periods approaches ∞, we say the interest is compounded continuously.

The amount A after t years due to a principal P invested at an annual percentage rate (APR) r compounded continuously is

$$
A=P \cdot e^{r t}
$$

EXAMPLES

3. Fred and Jane Sheffey have just invested $\$ 10,000$ in a money market account with an APR of 7.65%. How much will they have in this account in 5 years if the interest is compounded continuously?
4. You put $\$ 5,000$ in the bank at an APR of 12% compounded continuously.
(a) Find a formula for the amount in the bank after t months.
(b) Use your answer to part (a) to find the amount of money in the bank after 7 months.

EFFECTIVE RATE OF INTEREST

The effective rate of interest for an investment is the equivalent simple interest rate that would yield the same amount as compounding n times per year, or continuously, after one year.

The effective rate of interest r_{e} of an investment earning an annual percentage rate (APR) r is given
by
Compounding n time per year: $r_{e}=\left(1+\frac{r}{n}\right)^{n}-1$
Continuous Compounding: $r_{e}=e^{r}-1$

EXAMPLES

5. Find the effective rate of interest of the following:
(a) 10% compounded monthly
(b) 3\% compounded continuously
6. Which is the better investment?

A: 4.7% compounded semiannually
B: 4.65% compounded continuously

PRESENT VALUE

The present value of A dollars to be received at a future date is the principal that you would need to invest now so that it would grow to A dollars in the specified time period.

PRESENT VALUE (CONCLUDED)

The present values P of A dollars to be received after t years, assuming an annual percentage rate (APR) r compounded n times per year, is

$$
P=A \cdot\left(1+\frac{r}{n}\right)^{-n t}
$$

If the interest is compounded continuously, then

$$
P=A \cdot e^{-r t}
$$

