Section 6.5

Properties of Logarithms

EXAMPLES

Use the properties of logarithms to write each expression as a sum and/or difference of logarithms. Express powers as factors.

1. $\log _{2}\left(5 x^{3} y z^{4}\right)$
2. $\log _{6}\left(\frac{2 y^{3}}{x^{4} \sqrt{z}}\right)$

LOGARITHIMIC PROPERTIES

1. $\log _{a} 1=0$
2. $\log _{a} a=1$
3. $a^{\log _{a} M}=M$
4. $\log _{a} a^{r}=r$
5. $\log _{a}(M N)=\log _{a} M+\log _{a} N$
6. $\log _{a}\left(\frac{M}{N}\right)=\log _{a} M-\log _{a} N$
7. $\log _{a}\left(M^{r}\right)=r \log _{a} M$
8. $\log _{a}\left(\frac{1}{N}\right)=-\log _{a} N$
9. $\log _{a} M=\log _{a} N \Leftrightarrow M=N$

EXAMPLES

Use the properties of logarithms to rewrite each expression as a single logarithm.

1. $\frac{1}{2} \log _{5} z-3 \log _{5} y-2 \log _{5}(x+5)$
2. $3 \ln (y-2)-2 \ln (y-3)+4 \ln y$

CHANGE OF BASE FORMULA

If M, a, and b are positive real numbers with $a \neq 1$ and $b \neq 1$, then

$$
\log _{a} M=\frac{\log _{b} M}{\log _{b} a}
$$

In particular, if M and a are positive real numbers and $a \neq 1$, then

$$
\log _{a} M=\frac{\log M}{\log a}=\frac{\ln M}{\ln a}
$$

EXAMPLES

Use the Change of Base formula and a calculator to evaluate each logarithm. Round your answer to the nearest thousandth.

1. $\log _{4} 150$
2. $\log _{16} 1000$
