Section 6.5

Properties of Logarithms

LOGARITHIMIC PROPERTIES

1.
$$\log_a 1 = 0$$

2.
$$\log_a a = 1$$

3.
$$a^{\log_a M} = M$$

4.
$$\log_a a^r = r$$

5.
$$\log_a(MN) = \log_a M + \log_a N$$

6.
$$\log_a\left(\frac{M}{N}\right) = \log_a M - \log_a N$$

7.
$$\log_a(M^r) = r \log_a M$$

8.
$$\log_a\left(\frac{1}{N}\right) = -\log_a N$$

9.
$$\log_a M = \log_a N \iff M = N$$

EXAMPLES

Use the properties of logarithms to write each expression as a sum and/or difference of logarithms. Express powers as factors.

1.
$$\log_2(5x^3yz^4)$$

$$2. \log_6 \left(\frac{2y^3}{x^4 \sqrt{z}} \right)$$

EXAMPLES

Use the properties of logarithms to rewrite each expression as a single logarithm.

1.
$$\frac{1}{2}\log_5 z - 3\log_5 y - 2\log_5(x+5)$$

2.
$$3 \ln(y-2) - 2 \ln(y-3) + 4 \ln y$$

CHANGE OF BASE FORMULA

If M, a, and b are positive real numbers with $a \ne 1$ and $b \ne 1$, then

$$\log_a M = \frac{\log_b M}{\log_b a}$$

In particular, if M and a are positive real numbers and $a \ne 1$, then

$$\log_a M = \frac{\log M}{\log a} = \frac{\ln M}{\ln a}$$

EXAMPLES

Use the Change of Base formula and a calculator to evaluate each logarithm. Round your answer to the nearest thousandth.

- 1. $\log_4 150$
- $2. \log_{16} 1000$