Section 6.4

Logarithmic Functions

LOGARITHIMS

You will observe that exponential functions have the property that for a given *y*-value in the range there is only one *x*-value from which it comes. This means that if we know *y* we can uniquely determine *x*. The process of find the *x* given *y* is called taking the **logarithm** of the number *y*.

Exponents and logarithms convey the same information but in different forms.

EXPONENTIAL AND LOGARITHMIC FORMS

- The exponential form of $y = \log_a x$ is $a^y = x$.
- The logarithmic form of $a^y = x$ is $y = \log_a x$.

LOGARITHMIC FUNCTIONS The logarithmic function with base *a*, where

The logarithmic function with base a, where a > 0 and $a \neq 1$, is denoted by $y = \log_a x$ (read as "y is the logarithm to the base a of x") and is defined by

 $y = \log_a x$ if and only if $x = a^y$

The domain of the logarithmic function $y = \log_a x$ is $\{x \mid x > 0\}$ or in interval notation $(0, \infty)$.

Observe that logarithmic and exponential functions have the roles of *x* and *y* reversed. This means their domains and ranges switch roles.

GRAPHING LOGARITHMIC FUNCTIONS

To quickly graph the logarithmic function

DOMAIN AND RANGE OF LOGARITHMIC FUNCTION

- Domain of the logarithmic function = Range of the exponential function = $(0, \infty)$
- Range of the logarithmic function = Domain of the exponential function = $(-\infty, \infty)$

 $y = \log_a x$ (defining equation: $x = a^y$) Domain: $0 < x < \infty$ Range: $-\infty < x < \infty$

PROPERTIES OF $f(x) = \log_a x$

- Domain: (0,∞)
- Range: (−∞,∞)
- The *x*-intercept of the graph is (1, 0). There is no *y*-intercept.
- Vertical Asymptote: x = 0
- The graph of *f* contains the points $(\frac{1}{a}, -1)$, (1,0), and (*a*, 1).
- Increasing if a > 1
- Decreasing if 0 < a < 1
- The graph is smooth and continuous, with no corners or gaps.

DOMAIN OF A GENERAL LOGARITHMIC FUNCTIONS

Since the logarithm of a negative number and the logarithm of zero cannot be taken, *the argument of a logarithmic function must always be positive*. That is, if *Z* is an algebraic expression in *x*, the domain of

 $f(x) = \log_a Z$

is the set of numbers such that Z > 0.

COMMON AND NATURAL LOGARITHMS

Logarithms with a base of 10 are called common logarithms. We denote this by $\log x$. That is,

 $\log x = \log_{10} x$

Logarithms with a base of e are called **natural logarithms**. We denote this by $\ln x$. That is,

 $\ln x = \log_e x$

LOGARITHMIC EQUATIONS

Equations that contain logarithms are called **logarithmic equation**. Some logarithmic equations can be solved by converting them to exponential form. However, when solving logarithmic equations, *you must always check your solutions*.