

EXPONENTIAL FUNCTION The exponential function is a function of the form $f(x) = C \cdot a^x$ where *a* is a positive number $(a > 0), a \ne 1$, and $C \ne 0$ is a real number. The domain of *f* is the set of real numbers. The base *a* is called the growth factor, and because, $f(0) = C \cdot a^0 = C$, the number *C* is called the initial value. NOTE: Do not confuse exponential and power functions • $f(x) = x^2$ (power function) • $f(x) = 2^x$ (exponential function)

GRAPHING EXPONENTIAL FUNCTIONS

To graph the exponential function $f(x) = a^x$

plot points for x = -1, 0, and 1.

x	f(x)
-1	1
0	<u>а</u> 1
1	а

A THEOREM

Theorem: For an exponential function

$$f(x) = C \cdot a^x$$
, $a > 0$, $a \neq 1$, $C \neq 0$
if x is any real number, then

$$\frac{f(x+1)}{f(x)} = a \quad \text{or} \quad f(x+1) = a \cdot f(x)$$

PROPERTIES OF $f(x) = a^x$

- Domain: $(-\infty,\infty)$
- Range: (0,∞)
- There are no *x*-intercepts; the *y*-intercept is (0, 1).
- Horizontal Asymptote: y = 0 (the *x*-axis)
- The graph contains the points $\left(-1,\frac{1}{a}\right)$, (0, 1), and (1, *a*).
- Increasing if a > 1
- Decreasing if 0 < a < 1
- The graph of *f* is smooth and continuous, with no corners or gaps.

GROWTH AND DECAY FUNCTIONS

If an exponential function is increasing, it is called an <u>exponential growth function</u>.

If an exponential function is decreasing, it is called an <u>exponential decay function</u>.

THE NUMBER e

The number *e* is called the **<u>natural number</u>** and is often the base of an exponential function. It is defined as the number that the expression

 $\left(1+\frac{1}{n}\right)^n$

approaches as $n \to \infty$.

The decimal approximation of *e* is

 $e \approx 2.718281828459045$

 $e \approx 2.7$ 1828 1828 45 90 45

THE NATURAL EXPONENTIAL FUNCTION

The exponential function defined by $f(x) = e^x$ is called the **natural exponential function**.

EXPONENTIAL EQUATIONS

Equations that involve terms of the form a^x are often referred to as <u>exponential</u> <u>equations</u>. Such equations can sometimes be solved by using the following theorem.

<u>Theorem</u>: If $a^u = a^v$, then u = v.