Section 5.6

The Real Zeros of a Polynomial Function

THE DIVISION ALGORITHM FOR POLYNOMIALS

If f(x) and g(x) denote polynomial functions and if g(x) is not the zero polynomial, there are unique polynomial functions q(x) and r(x) such that

$$\frac{f(x)}{g(x)} = q(x) + \frac{r(x)}{g(x)} \text{ or } f(x) = q(x) \cdot g(x) + r(x)$$

where r(x) is either the zero polynomial or polynomial of degree less than that of g(x).

DIVIDEND, DIVISOR, QUOTIENT, AND REMAINDER

In the equation on the previous slide,

- f(x) is the **<u>dividend</u>**
- g(x) is the <u>divisor</u>
- q(x) is the **<u>quotient</u>**
- r(x) is the <u>remainder</u>

THE REMAINDER THEOREM

Let f(x) be a polynomial function. If f(x) is divided by x - c, then the remainder is f(c).

THE FACTOR THEOREM

Let *f* be a polynomial function. Then x - c is a factor of f(x) if and only if f(c) = 0.

The Factor Theorem consists of two separate statements.

1. If f(c) = 0, then x - c is a factor of f(x).

2. If x - c is a factor of f(x), then f(c) = 0.

THE NUMBER OF REAL ZEROS

A polynomial function cannot have more zeros than its degree.