Section 5.5

Polynomial and Rational Inequalities

SOLVING A POLYNOMIAL OR RATIONAL INEQUALITY

Step 1: Write the inequality so that the polynomial or rational expression \(f \) is on the left side and zero is on the right side in one of the following forms:

\[
\begin{align*}
 f(x) &> 0 & f(x) &\geq 0 \\
 f(x) &< 0 & f(x) &\leq 0
\end{align*}
\]

For rational expressions, be sure that the left side is written as a single quotient and find its domain.

SOLVING (CONTINUED)

Step 2: Determine the real numbers at which the expression \(f \) on the left side is equal to zero, and, if the expression is rational, the real numbers at which the expression \(f \) on the left side is undefined.

Step 3: Use the numbers from Step 2 to separate the real number into intervals.

SOLVING (CONCLUDED)

Step 4: Select a number in each interval and evaluate \(f \) at that number.

(a) If the value of \(f \) is positive, then \(f(x) > 0 \) for all numbers \(x \) in the interval.

(b) If the value of \(f \) is negative, then \(f(x) < 0 \) for all numbers \(x \) in the interval.

If the inequality is not strict, include the solutions of \(f(x) = 0 \) in the solution set. Be careful to exclude values of \(x \) where \(f \) is undefined.

TEST VALUES

The numbers selected in Step 4 are called test values because they are used to test whether the function is positive or negative in the interval.

The preceding method is sometimes called the test-value method for solving inequalities.