Section 5.2

Graphing Polynomial
 Functions; Models

GRAPH OF A POLYNOMIAL FUNCTION

Let $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}, a_{n} \neq 0$ be a polynomial function.

- Degree of $f: n$
- y-intercept: $\left(0, a_{0}\right)$
- The graph is smooth and continuous.
- Maximum number of turning points: $n-1$
- At a zero of even multiplicity: The graph touches the x-axis.
- At a zero of odd multiplicity: The graph crosses the x-axis.
- Between the zeros, the graph of f is either above or below the x-axis.
- End behavior: For large $|x|$, the graph of f behaves like the graph of $y=a_{n} x^{n}$.

ANALYZING THE GRAPH OF A POLYNOMIAL FUNCTION

Step 1: Determine the end behavior of the graph of the function.
Step 2: Find the x - and y-intercepts of the graph of the function.
Step 3: Determine the zeros of the function and their multiplicity. Use this information to determine whether the graph crosses or touches the x-axis at each x intercept.

Step 4: Determine the maximum number of turning points of the graph of the function.

Step 5: Use the information in Steps 1 through 4 to draw a complete graph of the function. To help establish the y axis scale, find additional points on the graph on each side of any x-intercepts.

