Section 4.3

Quadratic Functions and Their Properties

GRAPHS OF QUADRATIC FUNCTIONS

- The graph of a quadratic function is a parabola.
- The parabola opens up if the coefficient of x^{2} is positive.
- The parabola opens down if the coefficient of x^{2} is negative.
- The vertex of a parabola is the lowest point on a parabola that opens up or the highest point on a parabola that opens down.
- The axis of symmetry is the vertical line passing through the vertex of a parabola.

QUADRATIC FUNCTIONS

A quadratic function of x is a function that can be represented by an equation of the form

$$
f(x)=a x^{2}+b x+c
$$

where a, b, and c are real numbers and $a \neq 0$. The domain of a quadratic function is all real numbers.

This is called the standard form of a quadratic function.

VERTEX FORM OF QUADRATIC FUNCTIONS

Every quadratic function given by $f(x)=a x^{2}+b x+c$ can be written in the vertex form of a quadratic function:

$$
f(x)=a(x-h)^{2}+k, \quad a \neq 0
$$

The graph of f is a parabola with vertex (h, k). The parabola opens up if a is positive, and it opens down if a is negative.

To find the vertex form of a quadratic function, use the technique of completing the square.

VERTEX FORMULA

The vertex of the graph of $f(x)=a x^{2}+b x+c$ is

$$
\left(-\frac{b}{2 a}, f\left(-\frac{b}{2 a}\right)\right)
$$

SUMMARY OF PROPERTIES OF THE GRAPH OF A QUADRATIC FUNCTION

$$
f(x)=a x^{2}+b x+c, \quad a \neq 0
$$

- Vertex $=\left(-\frac{b}{2 a}, f\left(-\frac{b}{2 a}\right)\right)$
- Axis of Symmetry: the line $x=-\frac{b}{2 a}$
- Parabola opens up if is $a>0$; the vertex is a minimum point.
- Parabola opens down if is $a<0$; the vertex is a maximum point.

x-INTERCEPTS OF A QUADRATIC FUNCTION

1. If the discriminant $b^{2}-4 a c>0$, then graph of $f(x)=a x^{2}+b x+c$ has two distinct x intercepts so it crosses the x-axis in two places.
2. If the discriminant $b^{2}-4 a c=0$, then graph of $f(x)=a x^{2}+b x+c$ has one x-intercept so it touches the x-axis in at its vertex.
3. If the discriminant $b^{2}-4 a c<0$, then graph of $f(x)=a x^{2}+b x+c$ has no x-intercept so it does not cross or touch the x-axis.

MAXIMUM OR MINIMUM VALUE OF A QUADRATIC FUNCTION

- If a is positive, then the vertex (h, k) is the lowest point on the graph of $f(x)=a(x-h)^{2}+k$, and the y-coordinate k of the vertex is the minimum value of the function f.
- If a is negative, then the vertex (h, k) is the highest point on the graph of $f(x)=a(x-h)^{2}+k$, and the y-coordinate k of the vertex is the maximum value of the function f.
- In either case, the maximum or minimum value is achieved when $x=h$.

