$\square$

## RELATIONS

A relation is any correspondence between two sets.

If $x$ and $y$ are two elements in these sets and if a relationship exists between $x$ and $y$, then we say that $x$ corresponds to $y$.

## WAYS TO REPRESENT A RELATION

A relation can be represented in four ways:

- A listing of the ordered pairs, many times as a table
- A graph
- An equation
- A mapping


## MAPPINGS

A map illustrates a relation by using two sets and drawing arrows between them to show the correspondence between $x$ and $y$.

$\{($ Alaska, 7), (Arizona, 8), (California, 53), (Colorado, 7), (Florida, 25), (North Dakota, 1)\}

## DETERMINING IF A RELATION IS A FUNCTION

To determine if a relation is a function check to see if the same $x$-value is always paired with the same $y$-value.

## FUNCTION NOTATION

To emphasize that $y$ is a function of $x$, the notation $y=f(x)$ is used. This does NOT mean $f$ and $x$ are multiplied. It does mean that the function $f$ with input $x$ produces the output $y$.


## THE DIFFERENCE QUOTIENT

The expression

$$
\frac{f(x+h)-f(x)}{h}, \quad h \neq 0
$$

is called the difference quotient. It is used in Calculus to study how a function value changes as the independent variable changes.

## INDEPENDENT AND DEPENDENT VARIABLES

For the function, $y=f(x)$,

- the variable $x$ is called the independent variable, because it can be assigned any permissible number from the domain.
- the variable $y$ is called the dependent variable, because its value depends on $x$.

NOTE: The independent variable is also called the argument of the function.

## DETERMINING IF AN EQUATION IS A FUNCTION

To determine if an equation represents a function, solve the equation for $y$ to see if there are two $y$-values for one $x$-value

## DOMAIN AND RANGE

The domain can be thought of as the set of acceptable inputs of a function.

The range is the set of outputs.

## DETERMINING DOMAIN FROM EQUATIONS

To find the domain given an equation, look for acceptable inputs.

Common Examples:

1. Fractions: all numbers except those that make the denominator zero.
2. Even Roots: all numbers that make the radicand zero or positive.

## OPERATIONS ON FUNCTIONS

Sum: $(f+g)(x)=f(x)+g(x)$
Difference: $(f-g)(x)=f(x)-g(x)$
Product: $(f g)(x)=f(x) g(x)$
Quotient: $\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}, g(x) \neq 0$

## DOMAINS

- The domain for $f+g, f-g$, and $f g$ is the intersection of the domains of $f$ and $g$; that is, $D_{f} \cap D_{g}$.
- The domain for $f / g$ is the intersection of the domains of $f$ and $g$, except for those numbers $x$ such that $g(x)=0$; that is, $D_{f} \cap D_{g}-\{x \mid g(x)=0\}$.

