Section 2.3

Lines

SLOPE OF A LINE

Let $P=\left(x_{1}, y_{1}\right)$ and $Q=\left(x_{2}, y_{2}\right)$ be two distinct points. If $x_{1} \neq x_{2}$, the slope m of the nonvertical line L containing P and Q is defined by the formula

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}, \quad x_{1} \neq x_{2}
$$

If $x_{1}=x_{2}, L$ is a vertical line and the slope m of L is undefined (since this results in division by 0).

OTHER WAYS TO REMEMBER THE SLOPE FORMULA

The slope formula is some times remembered as

$$
m=\frac{\text { rise }}{\text { run }}
$$

or

$$
m=\frac{\text { change in } y}{\text { change in } x}=\frac{\Delta y}{\Delta x}
$$

SLOPE AND THE SHAPE OF A LINE

1. When the slope of a line is positive $(m>0)$, the line slants upward from left to right.
2. When the slope of a line is negative ($m<0$), the line slants downward from left to right.
3. When the slope of a line is zero ($m=0$), the line is horizontal.
4. When the slope is undefined, the line is vertical.

POINT-SLOPE EQUATION

OF A LINE
An equation of a nonvertical line with slope m that contains the point $\left(x_{1}, y_{1}\right)$ is

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

EQUATION OF A HORIZONTAL LINE

A horizontal line is given by an equation of the form

$$
y=b
$$

where b is the y-intercept.

GENERAL FORM OF AN EQUATION OF A LINE

The equation of a line is in general form (or standard form) when it is written as

$$
A x+B y=C
$$

where A, B, and C are real numbers and A and B are not both 0 .

PERPENDICULAR LINES

Criterion for Perpendicular Lines: Two nonvertical lines are perpendicular if and only if the product of their slopes is -1 .

- If two nonvertical lines are perpendicular, then the product of their slopes is -1 .
- If two nonvertical lines have slopes whose product is -1 , then they are perpendicular.

SLOPE-INTERCEPT FORM OF AN EQUATION FOR A LINE

An equation of a line with slope m and y intercept b is

$$
y=m x+b
$$

PARALLEL LINES

Criterion for Parallel Lines: Two nonvertical lines are parallel if and only if their slopes are equal and they have different y-intercepts.

- If two nonvertical lines are parallel, then their slopes are equal and they have different y-intercepts.
- If two nonvertical lines have equal slopes and different y-intercepts, then they are parallel.

