Section 2.2

Graphs of Equations in Two Variables; Intercepts; Symmetry

THE GRAPH OF AN EQUATION

The graph of an equation in the two variables x and y is the set of all points whose coordinates satisfy the equation.

PROCEDURE FOR GRAPHING AN EQUATION

1. If necessary, solve the equation for y.
2. Pick values to substitute for x and make a table with x and y values.
3. Plot the points from Step 2 on the $x y$-plane.
4. Connect the points.

NOTE: Be sure to pick enough points so you can see the pattern for the graph.

INTERCEPTS

Some important points in a graph are the x - and y-intercepts. The x-intercept of a graph is a place where the graph intersects the x-axis. The y-intercept of a graph is a place where the graph intersects the y-axis.

- To find the x-intercept(s), if any, of the graph of an equation, let $y=0$ in the equation and solve for x, where x is a real number.
- To find the y-intercept(s), if any, of the graph of an equation, let $x=0$ in the equation and solve for y, where y is a real number.

SYMMETRY WITH RESPECT TO THE y-AXIS

A graph is said to be symmetric with respect to the y-axis if, for every (x, y) on the graph, the point $(-x, y)$ is also on the graph.

SYMMETRY WITH RESPECT TO THE ORIGIN

A graph is said to be symmetric with respect to the origin if, for every (x, y) on the graph, the point $(-x,-y)$ is also on the graph.

TESTS FOR SYMMETRY

To test the graph of an equation for symmetry with respect to
x-axis Replace y by $-y$ in the equation and simplify. If an equivalent equation results, the graph of the equation is symmetry with respect to the x-axis.
y-axis Replace x by $-x$ in the equation and simplify. If an equivalent equation results, the graph of the equation is symmetry with respect to the y-axis.
origin Replace x by $-x$ and y by $-y$ in the equation and simplify. If an equivalent equation results, the graph of the equation is symmetry with respect to the origin.

