

THE DISTANCE FORMULA

The distance between two points $P_{1}=\left(x_{1}, y_{1}\right)$ and $P_{2}=\left(x_{2}, y_{2}\right)$, denoted by $d\left(P_{1}, P_{2}\right)$, is

$$
d\left(P_{1}, P_{2}\right)=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

To compute the distance between two points, find the difference in the x-coordinates, square it, and add this to the square of the difference of the y-coordinates. The square root of this sum is the distance.

EXAMPLE

Consider the points $A=(-2,5), B=(12,3)$, and $C=(10,-11)$.
(a) Plot each point and form the triangle $A B C$.
(b) Find the length of each side of triangle $A B C$.
(c) Verify that triangle $A B C$ is a right triangle.
(d) Compute the area of triangle $A B C$.

THE MIDPOINT FORMULA

The midpoint $M=(x, y)$ of the line segment from $P_{1}=\left(x_{1}, y_{1}\right)$ and $P_{2}=\left(x_{2}, y_{2}\right)$ is given by

$$
M=(x, y)=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

To find the midpoint of a line segment, average the x-coordinates of the endpoints, and average the y-coordinates of the endpoints.

