Section 1.6

Equations and Inequalities Involving Absolute Value

ABSOLUTE VALUE

Let a be a real number. The absolute value of \underline{a}, denoted by $|\boldsymbol{a}|$, is

$$
|a|=\left\{\begin{array}{cc}
a & \text { if } a \geq 0 \\
-a & \text { if } a<0
\end{array}\right.
$$

This simply measures how far the number a is from 0 on the number line.

SOLVING EQUATIONS
 INVOLVING ABSOLUTE VALUE

To solve an equation involving one absolute value symbol, we use the following Theorem

Theorem: If a is a positive real number and if u is any algebraic expression, then
$|u|=a$ is equivalent to $u=a$ or $u=-a$.

Theorem: If a is a positive real number and if u is any algebraic expression, then

$$
\begin{aligned}
& |u|<a \text { is equivalent to }-a<u<a \\
& |u| \leq a \text { is equivalent to }-a \leq u \leq a
\end{aligned}
$$

In other words, $|u|<a$ is equivalent to $-a<u$ and $u<a$.

SOLVING ABSOLUTE VALUE INEQUALITIES

To solve an inequality involving one absolute value symbol, we use one of the following Theorems.

Theorem: If a is a positive real number and if u is any algebraic expression, then
$|u|>a$ is equivalent to $u<-a$ or $u>a$
$|u| \geq a$ is equivalent to $u \leq-a$ or $u \geq a$

