Section 1.4

Solving Radical Equations; Equations Quadratic in Form; Solve Equations by Factoring

RADICAL EQUATIONS

- When the variable in an equation occurs under a square root, cube root, etc., the equation is called a radical equation.
- To solve a radical equation, isolate the most complicated radical on one side and then eliminate it by raising each side to a power equal to the index of the radical.
- After solving, there may apparent solutions which are not solutions to the original equation. These are called extraneous solutions.
- Always check all answers when solving radical equations.

EQUATIONS THAT ARE QUADRATIC IN FORM

An equation is called quadratic in form if there is a substitution, say u, that transforms the equation into one of the form

$$
a u^{2}+b u+c=0, \quad a \neq 0
$$

EXAMPLES:

1. $x^{6}-9 x^{3}+8=0$ can be transformed into
$u^{2}-9 u+8=0$ by letting $u=x^{3}$.
2. $4(x+1)^{4}-37(x+1)^{2}+9=0$ can be transformed in $4 u^{2}-37 u+9=0$ by letting $u=(x+1)^{2}$.

SOLVE EQUATION BY FACTORING

There are other equations, besides quadratic equations, that can be solved by factoring.

One common example is factoring by grouping. This technique is best illustrated by an example.

EXAMPLE: Solve $x^{3}-3 x^{2}-4 x+12=0$

