STUDY GUIDE FOR TEST III
MATH 1111

There will be 9 questions on the test. There will also be a 10-point bonus questions.

<table>
<thead>
<tr>
<th>Question</th>
<th>Objective(s)</th>
</tr>
</thead>
</table>
| 1 | Evaluate a function of a number.
Evaluate a function of an algebraic expression.
[Section 3.1, p. 211, #43-50;
Chapter Review, p. 268, #3-5] |
| 2 | Determine the domain of a function.
[Section 3.1, p. 211, #51-66;
Chapter Review, p. 268, #9-11] |
| 3 | Determine which way a parabola opens.
Identify the vertex of the parabola.
Graph a quadratic function.
[Section 4.3, pp. 299-300, #33-48;
Chapter Review, p. 317, #9-13] |
| 4 | Write a quadratic equation in standard form.
Find the x- and y-intercepts of a quadratic function.
[Section 4.3, pp. 299-300, #33-48;
Chapter Review, p. 317, #11-13] |
| 5 | Solve a polynomial inequality.
[Section 5.4, p. 373, #19-32;
Chapter Review, p. 398, #21, 22] |
| 6 | Solve a rational inequality.
[Section 5.4, p. 373, #33-48;
Chapter Review, p. 398, #23-25] |
| 7 | Find the zeros of a polynomial written in factored form.
Determine the multiplicity of zeros.
Determine how the graph intersects with the x-axis at zeros.
Determine the maximum number of turning points on the graph of a polynomial.
Determine the end behavior of a polynomial.
[Section 5.1, pp. 339-340, #57-68, 81-98;
Chapter Review, p. 397, #8-11] |
| 8 | Write an equation in factored form for a polynomial function whose graph is given.
[Section 5.1, pp. 339-340, 73-80] |
| 9 | Use the Factor Theorem to determine if a binomial is a factor of a given polynomial.
[Section 5.5; p. 387, #11-20] |