Study Guide for TEST II MATH 1111

There will be 7 questions on the test. There will also be a 10 -point bonus question.

Question	Obiective(s) 1Find the distance between two points. Find the midpoint of the line segment connecting two points. [Section 2.1, p. 155, \#19-30, 37-44; Chapter Review, p. 195, \#1-3, parts (a) and (b)]
2	Find the x - and y-intercepts of the graph of an equation. [Section 2.2, pp. 165-166, \#19-30, 57-72; Chapter Review, p. 195, \#6-10]
3	Test an equation to see if its graph is symmetric with respect to the x - axis, y-axis, and/or origin. [Section 2.2, p. 166, \#57-72; Chapter Review, p. 195, \#6-10]
4	Determine the slope and y-intercept of a line. Sketch the graph of a line. [Section 2.3, p. 179, \#73-92; Chapter Review, p. 195, \#22-25]
5	Find the slope-intercept form of the equation of a line that is given in general form. Find the slope-intercept form of the equation of a line parallel and/or perpendicular to a given and passing through a given point. [Section 2.3, p. 179, \#61-72, 79-92; Chapter Review, p. 195, \#20-21]
$6-7$	Write the standard form of the equation of a circle given its center and radius. Write the standard form of the equation of a circle from the general form. Find the center and radius of a circle. Graph a circle given its equation. [Section 2.4, p. 186, \#9-36; Chapter Review, p. 195, \#11-15]
2	

