The Method of Disks/Washers

NOTE: In the Method of Disks/Washers the slices are always perpendicular to the axis of rotation.

Axis of Rotation Horizontal $y=c$	Axis of Rotation Vertical $x=d$
Slices are vertical	Slices are horizontal
Integrate with respect to x (all equations in terms of x)	Integrate with respect to y (all equations in terms of y)
Example: Find the volume when the firstquadrant portion of the region bounded by $y=x^{2}, y=2 x$ is rotated about the x-axis.	Example: Find the volume when the firstquadrant portion of the region bounded by $y=x^{2}, y=2 x$ is rotated about the y-axis.
$V=\pi \int_{0}^{2}\left[(2 x)^{2}-\left(x^{2}\right)^{2}\right] d x$	$V=\pi \int_{0}^{4}\left[(\sqrt{y})^{2}-\left(\frac{1}{2} y\right)^{2}\right] d y$
$=\pi \int_{0}^{2}\left(4 x^{2}-x^{4}\right) d x$	$=\pi \int_{0}^{4}\left(y-\frac{1}{4} y^{2}\right) d y$
64π	8π
$=\frac{15}{15}$	$=\frac{8}{3}$

The Method of Shells

NOTE: In the Method of Shells the slices are always parallel to the axis of rotation.

Axis of Rotation Horizontal $y=c$	Axis of Rotation Vertical $x=d$
Slices are horizontal	Slices are vertical
Integrate with respect to y (all equations in terms of y)	Integrate with respect to x (all equations in terms of x)
Example: Find the volume when the firstquadrant portion of the region bounded by $y=x^{2}, y=2 x$ is rotated about the x-axis.	Example: Find the volume when the firstquadrant portion of the region bounded by $y=x^{2}, y=2 x$ is rotated about the y-axis.
$V=2 \pi \int_{0}^{4} y\left(\sqrt{y}-\frac{1}{2} y\right) d y$	$V=2 \pi \int_{0}^{2} x\left(2 x-x^{2}\right) d x$
$=2 \pi \int_{0}^{4}\left(y^{3 / 2}-\frac{1}{2} y^{2}\right) d y$	$=2 \pi \int_{0}^{2}\left(2 x^{2}-x^{3}\right) d x$
64π	8π
$=\frac{15}{15}$	$=\frac{8}{3}$

