

VOLUME BY CYLINDRICAL SHELLS

1. If the solid consists of concentric vertical shells between $x=a$ and $x=b$, we find the radius $r(x)$ and height $h(x)$ of the shell at x, and the volume is

$$
V=2 \pi \int_{a}^{b} r(x) h(x) d x
$$

2. If the solid consists of concentric horizontal shells between $y=c$ and $y=d$, we find the radius $r(y)$ and length $l(y)$ of the shell at y, and the volume is

$$
V=2 \pi \int_{c}^{d} r(y) l(y) d y
$$

THE VOLUME OF CYLINDRICAL SHELL

$$
V=2 \pi r h \Delta r
$$

where r is the average radius, h is the height, and Δr is the thickness.

PROCEDURE FOR THE METHOD OF SHELLS

1. Sketch the region. Label intersection points, if any.
2. Draw a slice and label the radius, height, and thickness.
3. Sum the volume of all shells; that is, set up and evaluate a definite integral.
