Section 5.2

Volumes

DEFINITION OF VOLUME USING HORIZONTAL SLICES

Let S be a solid that lies between $y=c$ and $y=d$. If the cross-sectional area of S in the $y=d$. If the cross-sectional area of S in the
plane, through y and perpendicular to the y axis, is $A(y)$, where A is a continuous function, then the volume of S is

$$
V=\int_{c}^{d} A(y) d y
$$

DEFINITION OF VOLUME USING VERTICAL SLICES

Let S be a solid that lies between $x=a$ and $x=b$. If the cross-sectional area of S in the plane, through x and perpendicular to the x axis, is $A(x)$, where A is a continuous function, then the volume of S is

$$
V=\int_{a}^{b} A(x) d x
$$

VOLUME OF A DISK

$$
V=\pi R^{2} w
$$

where R is the radius and w is the width

SOME USEFUL AREAS

1. If the cross-section is a disk, we find the radius of the disk (in terms of x or y) and use

$$
A=\pi(\text { radius })^{2}
$$

2. If the cross-section is a washer, we find the inner radius and the outer radius of the washer (in terms of x or y) and use

$$
\begin{aligned}
A & =\pi(\text { outer radius })^{2}-\pi(\text { inner radius })^{2} \\
& =\pi\left[(\text { outer radius })^{2}-(\text { inner radius })^{2}\right]
\end{aligned}
$$

VOLUME OF A WASHER

$$
V=\pi\left(R^{2}-r^{2}\right) w
$$

where R is the outside radius, r is the inside radius, and w is the width.

VOLUME BY DISKS

1. If the solid consists of adjacent vertical disks between $x=a$ and $x=b$, we find the radius $R(x)$ of the disk at x, and the volume is

$$
V=\pi \int_{a}^{b}[R(x)]^{2} d x
$$

2. If the solid consists of adjacent horizontal disks between $y=c$ and $y=d$, we find the radius $R(y)$ of the disk at y, and the volume is

$$
V=\pi \int_{c}^{d}[R(y)]^{2} d y
$$

VOLUME BY WASHERS

1. If the solid consists of adjacent vertical washers between $x=a$ and $x=b$, we find the outside radius $R(x)$ and inside radius $r(x)$ of the washer at x, and the volume is

$$
V=\pi \int_{a}^{b}\left([R(x)]^{2}-[r(x)]^{2}\right) d x
$$

2. If the solid consists of adjacent horizontal washers between $y=c$ and $y=d$, we find the outside radius $R(y)$ and inside radius $r(y)$ of the disk at y, and the volume is

$$
V=\pi \int_{c}^{d}\left([R(y)]^{2}-[r(y)]^{2}\right) d y
$$

PROCEDURE FOR FINDING VOLUMES

BY THE METHOD OF DISKS

1. Sketch the region. Label intersection points.
2. Draw a slice and label the outside radius, inside radius (if necessary), and width.
3. Sum the volume of all disks (or washers); that is, set up and evaluate a definite integral.
