Section 4.2

The Definite Integral

REMARKS

The symbol \int is called an integral sign.
In the notation $\int_{a}^{b} f(x) d x, f(x)$ is called the integrand, and a and b are called the limits of integration; a is the lower limit and b is the upper limit.

The symbol $d x$ has no official meaning by itself; $\int_{a}^{b} f(x) d x$ is all one symbol.
The procedure of calculating an integral is called integration.

THE DEFINITE INTEGRAL

If f is a function defined for $a \leq x \leq b$, we divide the interval $[a, b$] into n subintervals of equal width $\Delta x=\frac{b-a}{n}$. We let
$a=x_{0}, x_{1}, x_{2}, x_{3}, \ldots, x_{n}=b$ be the endpoints of these subintervals and we let $x_{1}^{*}, x_{2}^{*}, \ldots, x_{n}^{*}$ be any sample points in these subintervals, so that x_{i}^{*} lies in the i th subinterval $\left[x_{i-1}, x_{i}\right]$. Then the definite integral of f from a to b is

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

provided that this limit exists and gives the same value for all possible sample points. If it does exist, we say that f is integrable on $[a, b]$.

THE RIEMANN SUM

The sum

$$
\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

from the definition of the definite integral is called a Riemann sum after the German mathematician Bernhard Riemann.

FUNCTIONS THAT ARE INTEGRABLE

Theorem: If f is a continuous function on $[a, b]$, or if f has only a finite number of jump discontinuities, then f is integrable on $[a, b]$; that is, the definite integral $\int_{a}^{b} f(x) d x$ exists.

NET AREA

If $f(x) \geq 0$ (that is, the graph lies above the x-axis), $\int_{a}^{b} f(x) d x$ gives the area under the curve.
If the graph of $f(x)$ lies both above and below the x axis, then the definite integral gives the net area (the area above the x-axis subtracted by the area below the x-axis); that is
$\int_{a}^{b} f(x) d x=A_{\text {up }}-A_{\text {down }}$

THE MIDPOINT RULE

If we are approximating a definite integral, it is often better to let x_{i}^{*} be the midpoint of the i th subinterval. This results in the Midpoint Rule.

$$
\int_{a}^{b} f(x) d x \approx \sum_{i=1}^{n} f\left(\bar{x}_{i}\right) \Delta x=\Delta x\left[f\left(\bar{x}_{1}\right)+\cdots+f\left(\bar{x}_{n}\right)\right]
$$

where $\Delta x=\frac{b-a}{n}$
and $\bar{x}_{i}=\frac{1}{2}\left(x_{i-1}+x_{i}\right)=$ midpoint of $\left[x_{i-1}, x_{i}\right]$

CONSTANT MULTIPLE AND

 ADDITION/SUBTRACTION PROPERTIES1. $\int_{a}^{b} c d x=c(b-a)$
2. $\int_{a}^{b}[f(x)+g(x)] d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x$
3. $\int_{a}^{b} c \cdot f(x) d x=c \cdot \int_{a}^{b} f(x) d x$
4. $\int_{a}^{b}[f(x)-g(x)] d x=\int_{a}^{b} f(x) d x-\int_{a}^{b} g(x) d x$

BASIC PROPERTIES OF THE DEFINITE INTEGRAL

$$
\begin{aligned}
& \int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x \\
& \int_{a}^{a} f(x) d x=0
\end{aligned}
$$

INTERVAL ADDITIVITY PROPERTY

5. $\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x=\int_{a}^{b} f(x) d x$

COMPARISON PROPERTIES

6. If $f(x) \geq 0$ for $a \leq x \leq b$, then $\int_{a}^{b} f(x) d x \geq 0$.
7. If $f(x) \geq g(x)$ for $a \leq x \leq b$, then

$$
\int_{a}^{b} f(x) d x \geq \int_{a}^{b} g(x) d x
$$

8. If $m \leq f(x) \leq M$ for $a \leq x \leq b$, then

$$
m(b-a) \leq \int_{a}^{b} f(x) d x \leq M(b-a)
$$

