

FINDING THE AREA UNDER A CURVE

- 1. Divide (partition) the interval [*a*, *b*] into *n* equal pieces (subintervals) of width $\Delta x = \frac{b-a}{n}$
- 2. The subintervals are: $[x_0, x_1], [x_1, x_2], ..., [x_{n-1}, x_n]$. Note that $a = x_0 < x_1 < x_2 < \dots < x_{n-1} < x_n = b$

AREA (CONTINUED)

3. Add up area of right (left) rectangles.

$$R_n = \sum_{i=1}^n f(x_i) \Delta x$$
$$L_n = \sum_{i=1}^n f(x_{i-1}) \Delta x$$

4. Take the limit as *n* approaches infinity to find true area under the curve.

$$A = \lim_{n \to \infty} R_n = \lim_{n \to \infty} L_n$$

AREA

Instead of using left endpoints or right endpoints, we could take the height of the rectangle to be the value of f at <u>any</u> number x_i^* in the *i*th subinterval $[x_{i-1}, x_i]$. These numbers are called <u>sample points</u>. Thus, the area can be given by

$$A = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i^*) \Delta x$$

See Figure 13 on page 299.

THE DISTANCE PROBLEM

The **distance problem** is to find the distance traveled by an object during a certain time period if the velocity of the object is known at all times.

EXAMPLE

Speedometer readings for a motorcycle at 12second intervals are given in the table below. Find two estimates for the distance traveled by the motorcycle for this 60-second period.

t (sec)	0	12	24	36	48	60
<i>v</i> (ft/sec)	30	28	25	22	24	27

DISTANCE TRAVELED

The distance, *d*, traveled by an object with velocity v = f(t) is

$$d = \lim_{n \to \infty} \sum_{i=1}^{n} f(t_{i-1}) \Delta t = \lim_{n \to \infty} \sum_{i=1}^{n} f(t_i) \Delta t$$