Section 4.1

Areas and Distances

FINDING THE AREA UNDER A CURVE

1. Divide (partition) the interval $[a, b]$ into n equal pieces (subintervals) of width $\Delta x=\frac{b-a}{n}$
2. The subintervals are:
$\left[x_{0}, x_{1}\right],\left[x_{1}, x_{2}\right], \ldots,\left[x_{n-1}, x_{n}\right]$. Note that
$a=x_{0}<x_{1}<x_{2}<\cdots<x_{n-1}<x_{n}=b$

AREA

Instead of using left endpoints or right endpoints, we could take the height of the rectangle to be the value of f at any number x_{i}^{*} in the i th subinterval $\left[x_{i-1}, x_{i}\right]$. These numbers are called sample points. Thus, the area can be given by

$$
A=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

See Figure 13 on page 299.

THE AREA PROBLEM

The area problem is to find the area of the region S that lies under the curve $y=f(x)$ from a to b. See the figure below.

AREA (CONTINUED)

3. Add up area of right (left) rectangles.

$$
\begin{aligned}
R_{n} & =\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x \\
L_{n} & =\sum_{i=1}^{n} f\left(x_{i-1}\right) \Delta x
\end{aligned}
$$

4. Take the limit as n approaches infinity to find true area under the curve.

$$
A=\lim _{n \rightarrow \infty} R_{n}=\lim _{n \rightarrow \infty} L_{n}
$$

THE DISTANCE PROBLEM

The distance problem is to find the distance traveled by an object during a certain time period if the velocity of the object is known at all times.

EXAMPLE

Speedometer readings for a motorcycle at 12second intervals are given in the table below. Find two estimates for the distance traveled by the motorcycle for this 60-second period.

$t(\mathrm{sec})$	0	12	24	36	48	60
$v(\mathrm{ft} / \mathrm{sec})$	30	28	25	22	24	27

DISTANCE TRAVELED

The distance, d, traveled by an object with velocity $v=f(t)$ is

$$
d=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(t_{i-1}\right) \Delta t=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(t_{i}\right) \Delta t
$$

