Section 3.9

Antiderivatives

A NOTATION FOR THE ANTIDERIVATIVE

If the function $F(x)$ is an antiderivative of the function $f(x)$, we can use the following notation:

$$
A_{x} f(x)=F(x)
$$

For Example: Since $F(x)=x^{2}$ is an antiderivative of $f(x)=2 x$, we can write

$$
A_{x}(2 x)=x^{2}
$$

PARTICULAR ANTIDERIVATIVES

Definition: A particular antiderivative is an antiderivative with a specific number for the constant, C, in the general antiderivative.

For Example: Each of the following is a particular antiderivative of $2 x$.

$$
\begin{aligned}
& x^{2} \\
& x^{2}+4 \\
& x^{2}-98
\end{aligned}
$$

ANTIDERIVATIVES

Definition: A function F is called an antiderivative of f on the interval I if $F^{\prime}(x)=f(x)$ for all x in the interval I.

THE "GENERAL" ANTIDERIVATIVE

Theorem: If F is an antiderivative of f on the interval I, then the most general antiderivative of f on I is

$$
F(x)+C
$$

where C is an arbitrary constant.
For Example: The most general antiderivative of $2 x$ is $x^{2}+C$; that is,

$$
A_{x}(2 x)=x^{2}+C
$$

SOME ANTIDERIVATIVE

 FORMULASPower Rule:

$$
\begin{aligned}
A_{x}\left(x^{n}\right) & =\frac{x^{n+1}}{n+1}+C, n \neq-1 \\
& =\frac{1}{n+1} x^{n+1}+C, n \neq-1
\end{aligned}
$$

Addition/Subtraction Rule:

$$
A_{x}[f(x) \pm g(x)]=A_{x}[f(x)] \pm A_{x}[g(x)]
$$

Constant Multiple Rule:

$$
A_{x}[k \cdot f(x)]=k \cdot A_{x}[f(x)]
$$

SOME TRIGONOMETRIC ANTIDERIVATIVES

$$
\begin{aligned}
& A_{x}(\cos x)=\sin x+C \\
& A_{x}(\sin x)=-\cos x+C \\
& A_{x}\left(\sec ^{2} x\right)=\tan x+C \\
& A_{x}(\sec x \tan x)=\sec x+C \\
& A_{x}\left(\csc ^{2} x\right)=-\cot x+C \\
& A_{x}(\csc x \cot x)=-\csc x+C
\end{aligned}
$$

DIFFERENTIAL EQUATION

Definition: An equation that involves the derivatives of a function is called a differential equation.

