## Section 3.3

## How Derivatives Affect the Shape of a Graph

## INCREASING/DECREASING TEST

## Theorem:

(a) If $f^{\prime}(x)>0$ on an interval, then $f$ is increasing on that interval.
(b) If $f^{\prime}(x)<0$ on an interval, then $f$ is decreasing on that interval.

## THE FIRST DERIVATIVE TEST

Suppose that $c$ is a critical number of a continuous function $f$.
(a) If $f^{\prime}$ changes from positive to negative at $c$, then $f$ has a local maximum at $c$.
(b) If $f^{\prime}$ changes from negative to positive at $c$, then $f$ has a local minimum at $c$.
(c) If $f^{\prime}$ does not change signs at $c$ (that is, $f^{\prime}$ is positive or negative on both sides of $c$ ), then $f$ has no local minimum or maximum at $c$.

## CONCAVITY

Definition: If the graph of $f$ lies above all of its tangents on an interval $I$, then it is called concave upward on $I$. If the graph of $f$ lies below all of its tangents on $I$, it is called concave downward.


(b) Concave downward

## CONCAVITY TEST

## Theorem:

(a) If $f^{\prime \prime}(x)>0$ for all $x$ in $I$, then the graph of $f$ is concave upward on $I$.
(b) If $f^{\prime \prime}(x)<0$ for all $x$ in $I$, then the graph of $f$ is concave downward on I.

## INFLECTION POINT

A point $P$ on a curve $y=f(x)$ is called an inflection point if $f$ is continuous at $P$ and the curve changes from concave upward to concave downward or from concave downward to concave upward at $P$.

## THE SECOND DERIVATIVE TEST

Theorem: Suppose $f^{\prime \prime}$ is continuous near $c$.
(a) If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)>0$, then $f$ has a local minimum at $c$.
(b) If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)<0$, then $f$ has a local maximum at $c$.

## COMMENTS ON THE SECOND DERIVATIVE TEST

Suppose $c$ is a critical number of the function $y=$ $f(x)$.

- If $f^{\prime \prime}(c)=0$, then the Second Derivative Test is inclusive. That is, the First Derivative Test must be used to determine local minimum or maximum. EXAMPLE: $f(x)=x^{4}$
- If $f^{\prime}(c)$ is undefined (does not exist), then the Second Derivative Test is inclusive. That is, the First Derivative Test must be used to determine local minimum or maximum.
EXAMPLE: $f(x)=x^{2 / 3}$


## EXAMPLES

1. Find the local minima and local maxima (if any) of

$$
f(x)=\sqrt[3]{x}(8-x)
$$

2. Sketch the graph of a function that satisfies all the conditions:
$f^{\prime}(-1)=f^{\prime}(1)=0$
$f^{\prime}(x)<0$ if $-1<x<1$
$f^{\prime}(x)>0$ if $1<x<2$ or $-2<x<-1$
$f^{\prime}(x)=-1$ if $x<-2$ or $x>2$
$f^{\prime \prime}(x)<0$ if $-2<x<0$
The point $(0,1)$ is an inflection point
