Section 3.1

Maximum and Minimum Values

LOCAL MINIMUM AND LOCAL MAXIMUM

1. A function f has a local (or relative) maximum at c if $f(c) \geq f(x)$ for all x near c.
2. A function f has a local (or relative) minimum at c if $f(c) \leq f(x)$ for all x near c.

ABSOLUTE MINIMUM AND ABSOLUTE MAXIMUM

1. A function f has an absolute (or global) maximum at c if $f(c) \geq f(x)$ for all x in D, where D is the domain of f. The number $f(c)$ is called the maximum value of f on D.
2. A function f has an absolute (or global) minimum at c if $f(c) \leq f(x)$ for all x in D, where D is the domain of f. The number $f(c)$ is called the minimum value of f on D.
3. The maximum and minimum values of f are called the extreme values (also called extrema) of f.

THE EXTREME VALUE THEOREM

Theorem: If f is continuous on a closed interval $[a, b]$, then f attains an absolute maximum value $f(c)$ and an absolute minimum value $f(d)$ at some numbers c and d in $[a, b]$.

FERMAT'S THEOREM

Theorem: If f has a local maximum or minimum at c, and if $f^{\prime}(c)$ exists, then $f^{\prime}(c)=0$.

CRITICAL NUMBERS

A critical number of a function f is a number c in the domain of f such that either $f^{\prime}(c)=0$ or $f^{\prime}(c)$ does not exist.

FERMAT'S THEOREM REVISITED

Fermat's Theorem can be stated using the idea of critical numbers as follows.

Fermat's Theorem: If f has a local minimum or local maximum at c, then c is a critical number of f.

[^0]
EXTREME VALUE THEOREM RESTATED

If f is continuous on closed interval $[a, b]$, then f attains both an absolute minimum and absolute maximum value on that interval.

[^0]: THE CLOSED INTERVAL METHOD
 To find the absolute maximum and minimum values of a continuous function on a closed interval $[a, b]$:

 1. Find the values of f at the critical numbers of f in (a, b).
 2. Find the values of f at the endpoints of the interval.
 3. The largest of the values from Steps 1 and The largest of the values from Steps 1
 2 is the absolute maximum value; the smallest of these values is the absolute minimum value.
