Section 2.6

Implicit Differentiation

PROCEDURE FOR IMPLICIT DIFFERENTIATION

1. Assuming y is a function of x, differentiate both sides with respect to x using the chain rule for y terms.
2. Collect the terms with $\frac{d y}{d x}$ on one side and the other terms on the other side.
3. Factor out $\frac{d y}{d x}$.
4. Divide both sides by the factor to leave $\frac{d y}{d x}$ by itself.

If the formula is NOT written this way, we say that y is an implicit function of x.

EXPLICIT AND IMPLICIT FUNCTIONS

Definition: The function y is a explicit function of x if the formula is written in the form

$$
y=\text { expression with } x \text { 's. }
$$

EXAMPLE

Below is the same function defined explicitly and implicitly.

EXPLICIT: $y=x^{2 / 3}$
IMPLICIT: $y^{3}=x^{2}$

EXAMPLE
Below is the same function defined explicitly
and implicitly.
EXPLICIT: $y=x^{2 / 3}$
IMPLICIT: $y^{3}=x^{2}$

IMPLICIT DIFFERENTIATION

Many times if a function is defined implicitly, it is difficult (or impossible) to write it explicitly. To take the derivative of an implicitly defined function, we use implicit differentiation.

