Section 2.2

The Derivative as a Function

THE DERIVATIVE AS A FUNCTION

Given any number x for which the limit exists, we define a new function f'(x), called the <u>derivative of f</u>, by

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

<u>NOTE</u>: The function f' can be graphed and studied just like any other function.

OTHER NOTATIONS FOR THE DERIVATIVE

Below are other notations for the derivative function, f'(x). All of the these notation are used interchangeably.

$$f'(x) = y' = \frac{dy}{dx} = \frac{df}{dx} = \frac{d}{dx}f(x)$$
$$= Df(x) = D_xf(x)$$

The symbols D and $\frac{dy}{dx}$ are called <u>differential</u> <u>operators</u> because they indicate the operation of <u>differentiation</u>, which is the process of calculating a derivative.

LEIBNIZ NOTATION

The $\frac{dy}{dx}$ notation is called <u>Leibniz notation</u>. This notation comes from the increment notation; that is,

$$\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$

If we want to indicate the value of $\frac{dy}{dx}$ at the value *a* using Leibniz notation, we write

$$\left. \frac{dy}{dx} \right|_{x=a}$$
 or $\left. \frac{dy}{dx} \right|_{x=a}$

which is a synonym for f'(a). The vertical bar means "evaluate at."

DIFFERENTIABILITY

Definition: A function *f* is differentiable at *a* if f'(a) exists. The function *f* is differentiable on an open interval (a, b) [or (a, ∞) or $(-\infty, b)$ or $(-\infty, \infty)$] if it is differentiable at every number in the interval.

DIFFERENTIABILITY AND CONTINUITY

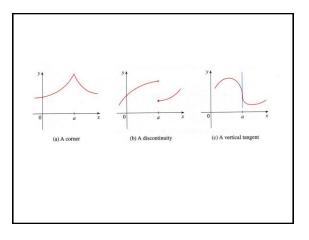
Theorem: If *f* is differentiable at *a*, then *f* is continuous at *a*.

<u>NOTE</u>: The converse of this theorem is false; that is, there are functions that are continuous at a point but not differentiable at that point.

HOW CAN A FUNCTION FAIL TO BE DIFFERENTIABLE?

A function, *f* , can fail to be differentiable in three ways.

- (a) The graph can have a corner (or sharp point).
- (b) The graph can have a discontinuity.
- (c) The graph can have a vertical tangent.



HIGHER ORDER DERIVATIVES

• The **second derivative** of y = f(x) is

$$y'' = f''(x) = D_x^2 f(x) = \frac{d}{dx} \left(\frac{dy}{dx}\right) = \frac{d^2 y}{dx^2}$$

• The <u>third derivative</u> of y = f(x) is

$$y''' = f'''(x) = D_x^3 f(x) = \frac{d}{dx} \left(\frac{d^2 y}{dx^2} \right) = \frac{d^3 y}{dx^3}$$

• The <u>*n*th derivative</u> of y = f(x) is

$$y^{(n)} = f^{(n)}(x) = D_x^n f(x) = \frac{d}{dx} \left(\frac{d^{n-1}y}{dx^{n-1}} \right) = \frac{d^n y}{dx^n}$$