Section 2.2

The Derivative as a Function

OTHER NOTATIONS FOR THE DERIVATIVE

Below are other notations for the derivative function, $f^{\prime}(x)$. All of the these notation are used
interchangeably.

$$
\begin{aligned}
f^{\prime}(x) & =y^{\prime}=\frac{d y}{d x}=\frac{d f}{d x}=\frac{d}{d x} f(x) \\
& =D f(x)=D_{x} f(x)
\end{aligned}
$$

The symbols D and $\frac{d y}{d x}$ are called differential operators because they indicate the operation of differentiation, which is the process of calculating a derivative.

THE DERIVATIVE AS A FUNCTION

Given any number x for which the limit exists, we define a new function $f^{\prime}(x)$, called the derivative of f by

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

NOTE: The function f^{\prime} can be graphed and studied just like any other function.

LEIBNIZ NOTATION

The $\frac{d y}{d x}$ notation is called Leibniz notation. This notation comes from the increment notation; that is,

$$
\frac{d y}{d x}=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}
$$

If we want to indicate the value of $\frac{d y}{d x}$ at the value a using Leibniz notation, we write

$$
\left.\left.\frac{d y}{d x}\right|_{x=a} \text { or } \frac{d y}{d x}\right]_{x=a}
$$

which is a synonym for $f^{\prime}(a)$. The vertical bar means "evaluate at."

DIFFERENTIABILITY

Definition: A function f is differentiable at a if $f^{\prime}(a)$ exists. The function f is differentiable on an open interval (a, b) [or (a, ∞) or $(-\infty, b)$ or $(-\infty, \infty)]$ if it is differentiable at every number in the interval.

DIFFERENTIABILITY AND CONTINUITY

Theorem: If f is differentiable at a, then f is continuous at a.

NOTE: The converse of this theorem is false; that is, there are functions that are continuous at a point but not differentiable at that point.

HOW CAN A FUNCTION FAIL TO BE DIFFERENTIABLE?

A function, f, can fail to be differentiable in three ways.
(a) The graph can have a corner (or sharp point).
(b) The graph can have a discontinuity.
(c) The graph can have a vertical tangent.

HIGHER ORDER DERIVATIVES

- The second derivative of $y=f(x)$ is

$$
y^{\prime \prime}=f^{\prime \prime}(x)=D_{x}^{2} f(x)=\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d^{2} y}{d x^{2}}
$$

- The third derivative of $y=f(x)$ is

$$
y^{\prime \prime \prime}=f^{\prime \prime \prime}(x)=D_{x}^{3} f(x)=\frac{d}{d x}\left(\frac{d^{2} y}{d x^{2}}\right)=\frac{d^{3} y}{d x^{3}}
$$

- The \boldsymbol{n} th derivative of $y=f(x)$ is

$$
y^{(n)}=f^{(n)}(x)=D_{x}^{n} f(x)=\frac{d}{d x}\left(\frac{d^{n-1} y}{d x^{n-1}}\right)=\frac{d^{n} y}{d x^{n}}
$$

