Section 2.1

Derivatives and Rates of Change

THE TANGENT LINE TO A CURVE AT A POINT

Definition: The tangent line to the curve $y=f(x)$ at the point $P(a, f(a))$ is the line through P with slope m where

$$
\begin{aligned}
m & =\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \\
& =\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
\end{aligned}
$$

provided the limit exists.
We sometimes refer to the slope of the tangent line at a point as the slope of the curve at that point.

INSTANTANEOUS VELOCITY

Suppose $s=f(t)$ is the position function of a moving object. The velocity (or instantaneous velocity), $v(a)$, at time $t=a$ is

$$
v(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

AN ALTERNATIVE FORM OF THE DERIVATIVE

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

INTERPRETATIONS OF THE DERIVATIVE

1. The tangent line to $y=f(x)$ at $(a, f(a))$ is the line through $(a, f(a))$ whose slope is equal to $f^{\prime}(a)$, the derivative of f at a.
2. The instantaneous velocity at time a of a particle whose position is described by $s=f(t)$ is give by $f^{\prime}(a)$, the derivative of f at a.

RATE OF CHANGE

Let $y=f(x)$. If x changes from x_{1} to x_{2}, then

1. the increment of x is $\Delta x=x_{2}-x_{1}$
2. the corresponding change in y is
$\Delta y=f\left(x_{2}\right)-f\left(x_{1}\right)$
3. The average rate of change of y with respect to x, over the interval $\left[x_{1}, x_{2}\right]$ is the difference quotient

$$
\frac{\Delta y}{\Delta x}=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}
$$

RATE OF CHANGE (CONCLUDED)

4. The instantaneous rate of change is

$$
\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim _{x_{2} \rightarrow x_{1}} \frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}
$$

ANOTHER INTERPRETATION OF THE DERIVATIVE

The derivative $f^{\prime}(a)$ is the instantaneous rate of change of $y=f(x)$ with respect to x when $x=a$.

