## Section 1.8

Continuity

## INTERPRETATION OF THE DEFINITION

Notice that the definition on the previous slide implicitly requires three things if $f$ is continuous at $a$.

1. $f(a)$ is defined (that is, $a$ is in the domain of $f$ )
2. $\lim _{x \rightarrow a} f(x)$ exists
3. $\lim _{x \rightarrow a} f(x)=f(a)$

## CONTINUITY AT A NUMBER a

Definition: A function $f$ is continuous at a number $a$ if

$$
\lim _{x \rightarrow a} f(x)=f(a) .
$$

## DISCONTINUITIES

Definition: If $f$ is defined near $a$, we say that $f$ has a discontinuity at $a$, or $f$ is discontinuous at $a$, if $f$ is not continuous at $a$.

## TYPES OF DISCONTINUITIES

There are three types of discontinuities.

1. Removable Discontinuity at $a$ : A discontinuity that can be removed by redefining $f$ at the number $a$.
2. Infinite Discontinuity at $a$ : A discontinuity where the limit of $f$ as $x$ approaches $a$ is either $\infty$ or $-\infty$.
3. Jump Discontinuity at $a$ : A discontinuity where the left-hand and right-hand limits are different at $a$ (and neither limit is $\infty$ or $-\infty$ ).

## LEFT CONTINUOUS AND RIGHT CONTINUOUS

Definition: A function $f$ is continuous from the left at a number $\boldsymbol{a}$ if

$$
\lim _{x \rightarrow a^{-}} f(x)=f(a)
$$

Definition: A function $f$ is continuous from the right at a number $a$ if

$$
\lim _{x \rightarrow a^{+}} f(x)=f(a)
$$

## CONTINUITY ON AN INTERVAL

Definition: A function $f$ is continuous on an interval if it is continuous at every number in the interval.

## CONTINUITY OF POLYNOMIALS AND RATIONAL FUNCTIONS

## Theorem:

a) Any polynomial is continuous everywhere; that is, it is continuous on $\mathbb{R}=(-\infty, \infty)$.
b) Any rational function is continuous wherever it is defined; that is, it is continuous in its domain.

## THE COMPOSITE LIMIT THEOREM

Theorem: If $f$ is continuous at $b$ and $\lim _{x \rightarrow a} g(x)=b$, then $\lim _{x \rightarrow a} f(g(x))=f(b)$.

In other words,

$$
\lim _{x \rightarrow a} f(g(x))=f\left(\lim _{x \rightarrow a} g(x)\right)
$$

This theorem says that a limit symbol can be moved through a function symbol if the function is continuous and the limit exists. In other words, the order of these two symbols can be reversed.

## THEOREM

If $f$ and $g$ are continuous at $a$ and $c$ is a constant, then the following functions are also continuous at:

1. $f+g$
2. $f-g$
3. $c f$
4. $f g$
5. $\frac{f}{g}$ if $g(a) \neq 0$

The following types of functions are continuous at every number in their domains:
polynomials rational functions
root functions trigonometric functions

## A COROLLARY OF THE COMPOSITE LIMIT THEOREM

If $g$ is continuous at $a$ and $f$ is continuous at $g(a)$, then the composite function $f \circ g$ given by $(f \circ g)(x)=f(g(x))$ is continuous at $a$.

## THE INTERMEDIATE VALUE THEOREM

Theorem: Suppose that $f$ is continuous on the closed interval $[a, b]$ and let $N$ be a number between $f(a)$ and $f(b)$, where $f(a) \neq f(b)$.. Then there exists a number $c$ in $(a, b)$ such that $f(c)=N$.

