Section 1.7

The Precise Definition of a Limit

THE PRECISE DEFINITION OF A LIMIT

Definition: Let *f* be a function defined on some open interval that contains the number *a*, except possibly at *a* itself. Then we say the limit of f(x) as *x* approaches *a* is *L*, and we write

$$\lim_{x \to a} f(x) = L$$

if for every number $\varepsilon>0$ there is a number $\delta>0$ such that

$$|f(x) - L| < \varepsilon$$
 whenever $0 < |x - a| < \delta$.

Alternatively,

if $0 < |x - a| < \delta$, then $|f(x) - L| < \varepsilon$.

LEFT-HAND AND RIGHT-HAND LIMITS

See page 77 of the text for the precise definition of left-hand and right-hand limits.

INFINITE LIMITS

Definition: Let f be a function defined on some open interval that contains the number a, except possibly at a. Then

$$\lim_{x \to a} f(x) = \infty$$

means that for every positive number M there is a positive number δ such that

f(x) > M whenever $0 < |x - a| < \delta$.

There is a similar definition for

$$\lim_{x \to a} f(x) = -\infty$$

on page 80 of the text.