## Section 1.7

The Precise Definition of a Limit

## THE PRECISE DEFINITION OF A LIMIT

Definition: Let $f$ be a function defined on some open interval that contains the number $a$, except possibly at $a$ itself. Then we say the limit of $f(x)$ as $x$ approaches $a$ is $L$, and we write

$$
\lim _{x \rightarrow a} f(x)=L
$$

if for every number $\varepsilon>0$ there is a number $\delta>0$ such that

$$
|f(x)-L|<\varepsilon \text { whenever } 0<|x-a|<\delta .
$$

Alternatively,

$$
\text { if } 0<|x-a|<\delta \text {, then }|f(x)-L|<\varepsilon .
$$

## LEFT-HAND AND RIGHT-HAND LIMITS

See page 77 of the text for the precise definition of left-hand and right-hand limits.

## INFINITE LIMITS

Definition: Let $f$ be a function defined on some open interval that contains the number $a$, except possibly at $a$. Then

$$
\lim _{x \rightarrow a} f(x)=\infty
$$

means that for every positive number $M$ there is a positive number $\delta$ such that

$$
f(x)>M \text { whenever } 0<|x-a|<\delta
$$

There is a similar definition for

$$
\lim _{x \rightarrow a} f(x)=-\infty
$$

on page 80 of the text.

