Section 1.6
Calculating Limits Using the Limit Laws

LIMIT LAWS THEOREM
Suppose that \(c \) is a constant and the limits \(\lim_{x \to a} f(x) \) and \(\lim_{x \to a} g(x) \) exist. Then
1. \(\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x) \)
2. \(\lim_{x \to a} [f(x) - g(x)] = \lim_{x \to a} f(x) - \lim_{x \to a} g(x) \)
3. \(\lim_{x \to a} [c \cdot f(x)] = c \cdot \lim_{x \to a} f(x) \)
4. \(\lim_{x \to a} [f(x) \cdot g(x)] = \left(\lim_{x \to a} f(x) \right) \cdot \left(\lim_{x \to a} g(x) \right) \)
5. \(\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \) if \(\lim_{x \to a} g(x) \neq 0 \)

LIMIT LAWS (CONTINUED)
6. \(\lim_{x \to a} [f(x)]^n = \left(\lim_{x \to a} f(x) \right)^n \) where \(n \) is a positive integer
7. \(\lim_{x \to a} c = c \)
8. \(\lim_{x \to a} x = a \)
9. \(\lim_{x \to a} x^n = a^n \)
10. \(\lim_{x \to a} \sqrt[n]{x} = \sqrt[n]{a} \) where \(n \) is a positive integer
 (If \(n \) is even, we assume that \(a > 0 \).)
11. \(\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)} \) where \(n \) is a positive integer
 (If \(n \) is even, we assume that \(\lim_{x \to a} f(x) > 0 \).)

DIRECT SUBSTITUTION PROPERTY
If \(f \) is a polynomial or a rational function and \(a \) is in the domain of \(f \), then
\[\lim_{x \to a} f(x) = f(a). \]

ANOTHER LIMIT PROPERTY
If \(f(x) = g(x) \) when \(x \neq a \), then
\[\lim_{x \to a} f(x) = \lim_{x \to a} g(x) \]
provided the limit exists.

A LIMIT THEOREM
Theorem: If \(f(x) \leq g(x) \) when \(x \) is near \(a \) (except possibly at \(a \)) and the limits of \(f \) and \(g \) both exist as \(x \) approaches \(a \), then
\[\lim_{x \to a} f(x) \leq \lim_{x \to a} g(x). \]
THE SQUEEZE THEOREM

Theorem: If \(f(x) \leq g(x) \leq h(x) \) when \(x \) is near \(a \) (except possibly at \(a \)) and

\[
\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L,
\]

then

\[
\lim_{x \to a} g(x) = L.
\]

NOTE: This theorem is also sometimes called the *Sandwich Theorem.*