Section 1.5

The Limit of a Function

ALTERNATIVE NOTATION FOR THE LIMIT

An alternative notation for

$$
\lim _{x \rightarrow a} f(x)=L
$$

is

$$
f(x) \rightarrow L \text { as } x \rightarrow a
$$

LEFT-HAND LIMITS

Definition: We write

$$
\lim _{x \rightarrow a^{-}} f(x)=L
$$

and say the left-hand limit of $f(x)$, as x approaches a [or the limit of $f(x)$ as x approaches a from the left] is equal to L if we can make the values of $f(x)$ arbitrarily close to L by taking values of x to be sufficiently close to a with x less than a, we

INTUITIVE DEFINITION OF A LIMIT OF A FUNCTION

Definition: Suppose $f(x)$ is defined when x is near the number a. (This means that f is defined on some open interval that contains a, except possibly at a itself.) Then we write

$$
\lim _{x \rightarrow a} f(x)=L
$$

and say
"the limit of $f(x)$, as x approaches a, equals $L "$
if we can make the values of $f(x)$ arbitrarily close to L (as close to L as we like) by taking values of x to be sufficiently close to a (on either side of a) but not equal to a.
we can make the values of $f(x)$ arbitrarily close to L by taking values of x to be sufficiently close to a with x greater than a, we

RIGHT-HAND LIMITS

Definition: We write

$$
\lim _{x \rightarrow a^{+}} f(x)=L
$$

and say the right-hand limit of $f(x)$, as x approaches a [or the limit of $f(x)$ as x approaches a from the right] is equal to L if

A LEFT-HAND RIGHT-HAND LIMIT THEOREM
 ALEETHAND RIGTHAND

Theorem:

$$
\begin{gathered}
\lim _{x \rightarrow a} f(x)=L \\
\text { if and only if } \\
\lim _{x \rightarrow a^{-}} f(x)=L \text { and } \lim _{x \rightarrow a^{+}} f(x)=L
\end{gathered}
$$

INFINITE LIMITS

Let f be a function defined on both sides of a, except possibly at a itself. Then

$$
\lim _{x \rightarrow a} f(x)=\infty
$$

means that the values of $f(x)$ can be made as positively large as we please by taking values of x sufficiently close to a, but not equal to a.

$$
\begin{aligned}
& \text { Let } f \text { be a function defined on both sides of } a \text {, except possibly at } \\
& a \text { itself. Then } \\
& \qquad \lim _{x \rightarrow a} f(x)=-\infty
\end{aligned}
$$

means that the values of $f(x)$ can be made as negatively large as we please by taking values of x sufficiently close to a, but not equal to a.

VERTICAL ASYMPTOTES

Definition: The line $x=a$ is called a vertical asymptote of the curve $y=f(x)$ if at least one of the following statements is true:

$$
\begin{array}{ccc}
\lim _{x \rightarrow a} f(x)=\infty & \lim _{x \rightarrow a^{-}} f(x)=\infty & \lim _{x \rightarrow a^{+}} f(x)=\infty \\
\lim _{x \rightarrow a} f(x)=-\infty & \lim _{x \rightarrow a^{-}} f(x)=-\infty & \lim _{x \rightarrow a^{+}} f(x)=-\infty
\end{array}
$$

It is NOT the vertical asymptotes that cause the limits to be ∞ or $-\infty$, but rather the limits being ∞ or $-\infty$ that create the vertical asymptotes.

