Section 1.4

The Tangent and Velocity Problems

SECANT LINES

A secant line to a curve is a line that goes through two points, P and Q, on the curve. We will denote the slope of the secant line through $P Q$ by $m_{P Q}$.

In particular, if $y=f(x)$ is our function and P is the point $(a, f(a))$ and Q is the point $(x, f(x))$, then the slope of the secant line is given by

$$
m_{P Q}=\frac{f(x)-f(a)}{x-a}
$$

THE SLOPE OF THE TANGENT LINE

The slope (m) of the tangent line at P is the limit of the slopes of the secant lines $P Q$ as Q approaches P. That is,

$$
m=\lim _{Q \rightarrow P} m_{P Q}
$$

In particular, if $y=f(x)$ is our function and P is the point $(a, f(a))$ and Q is the point $(x, f(x))$, then the

AVERAGE VELOCITY

The average velocity of an object is the distance the object traveled divided by the elapsed time. That is,

$$
\text { average velocity }=\frac{\text { distance traveled }}{\text { time elapsed }}
$$

In particular, if $s=f(t)$ describes the position of moving object at time t, then the average velocity of the object between time t and time a is

$$
\text { avg. vel. }=\frac{f(t)-f(a)}{t-a}
$$

WHAT IS A TANGENT LINE TO THE GRAPH OF A FUNCTION?

A line l is said to be a tangent to a curve at a point P if the line l touches, but does not intersect, the curve at P.
slope of the tangent line at $(a, f(a))$ is given by

$$
m=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

INSTANTANEOUS VELOCITY

The instantaneous velocity is the limiting value of the average velocities over shorter and shorter time periods.

In particular, if $s=f(t)$ describes the position of moving object at time t, then the instantaneous velocity of the object between at time a is

$$
v=\lim _{t \rightarrow a} \frac{f(t)-f(a)}{t-a}
$$

