Review for Test I

MATH 1501

1. (a) Complete the following table for $f(x)=\frac{\ln (x+5)-\ln 5}{x}$.

x	-0.1	-0.01	-0.001	0.001	0.01	0.1
$f(x)$						

Based on the evidence above, $\lim _{x \rightarrow 0} \frac{f(x+5)-f(5)}{x}=\lim _{x \rightarrow 0} \frac{\ln (x+5)-\ln 5}{x}=$ \qquad .
(b) Use the table below to find the following limits.

x	2	2.5	2.9	2.99	\rightarrow	3	\leftarrow	3.01	3.1	3.5	4
$f(x)$	7	6.25	6.125	6.0625	\rightarrow	$?$	\leftarrow	9.1026	9.283	9.67	10

i. $\quad \lim _{x \rightarrow 3^{-}} f(x)$
ii. $\quad \lim _{x \rightarrow 3^{+}} f(x)$
iii. $\lim _{x \rightarrow 3} f(x)$
2. Find the indicated limit or state it does not exist. If it does not exist, tell why. Use $-\infty$ and ∞ as appropriate.
(a) $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x+1}$
(b) $\lim _{x \rightarrow 0} \frac{\cos x}{x}$
(c) $\lim _{x \rightarrow 4} \frac{x-4}{\sqrt{x}-2}$
(d) $\lim _{x \rightarrow \frac{1}{2}^{-}} \llbracket 4 x \rrbracket$
(Hint: Rationalize the denominator.)
(Note: $\llbracket x \rrbracket$ is the greatest integer function.)
(e) $\quad \lim _{x \rightarrow 1^{-}} f(x)$ where $f(x)=\left\{\begin{array}{cl}x^{3} & \text { if } x<-1 \\ x & \text { if }-1<x<1 \\ 1-x & \text { if } x \geq 1\end{array}\right.$
(f) $\lim _{x \rightarrow 1} f(x)$ where $f(x)=\left\{\begin{array}{cl}x^{3} & \text { if } x<-1 \\ x & \text { if }-1<x<1 \\ 1-x & \text { if } x \geq 1\end{array}\right.$
(g) $\lim _{x \rightarrow-1}\left(2 x^{2}+6 x-1\right)$
(h) $\lim _{x \rightarrow 3} \frac{x^{2}-9}{x^{2}-3 x}$
(i) $\lim _{x \rightarrow 3^{-}} \frac{x+1}{x^{2}-9}$
(j) $\lim _{x \rightarrow 3} \frac{x+1}{x^{2}-9}$
3. Use the graph of $y=f(x)$ below to answer the following. If a limit does not exist, explain why.

(a) $\lim _{x \rightarrow 2^{+}} f(x)$
(b) $\lim _{x \rightarrow-3^{+}} f(x)$
(c) $\lim _{x \rightarrow-3} f(x)$
(d) $\lim _{x \rightarrow 4} f(x)$
(e) $\lim _{x \rightarrow 0} f(x)$
(f) $\lim _{x \rightarrow 2^{-}} f(x)$
(g) State the equation(s) of any vertical asymptotes.
(h) At what numbers is f discontinuous? Explain using the definition of continuity. Also, at what numbers (if any) is f right- or leftcontinuous?
4. Determine at what points, if any, the following functions are discontinuous. Classify any points of discontinuity as removable or nonremovable.
(a) $f(x)=4 x^{2}-2 x+12$
(b) $g(x)=\frac{x^{3}-8}{x-2}$
(c) $\quad f(x)=\left\{\begin{array}{cl}x & \text { if } x<0 \\ x^{2} & \text { if } 0 \leq x \leq 2 \\ 2-x & \text { if } x>2\end{array}\right.$
(d) $f(x)=\frac{1}{x-1}$
(e) $f(x)=\frac{x}{x^{2}+1}$
(f) $f(x)=\frac{x-1}{x^{2}+x-2}$
5. Use the Intermediate Value Theorem to show that the equation
$x^{5}-4 x^{3}-3 x+1=0$ has at least one solution between $x=2$ and $x=3$.
6. Sketch the graph of a function that satisfies all the following conditions.

- Its domain is $[0,6]$
- $f(0)=f(2)=f(4)=f(6)=2$
- f is continuous except at $x=2$.
- $\lim _{x \rightarrow 2^{-}} f(x)=1$ and $\lim _{x \rightarrow 2^{+}} f(x)=2$

7. Identify any vertical asymptotes of the graphs of the following functions. Indicate the limit from each side of a vertical asymptote.
(a) $f(x)=\frac{1}{(x+3)^{4}}$
(b) $f(x)=\frac{4 x^{2}}{4-x^{2}}$
(c) $f(x)=\frac{-4 x}{x^{2}+4}$
8. (a) The point $P(1,-3)$ lies on the curve $f(x)=x^{2}-5 x+1$. Find the slope of the secant line $P Q$ where Q is the point on the graph where $x=2$.
(b) A ball is thrown straight upward with an initial velocity of $48 \mathrm{ft} / \mathrm{sec}$
from the edge of a building 196 feet tall. Its height, in feet, above the ground after t seconds is given by $f(t)=196+48 t-16 t^{2}$. Using the definition, find the average velocity over the time interval [3,5].
9. (a) The table below gives the values of a function f at certain values of x. Estimate the slope of the tangent line at $x=0$.

x	-1	$-\frac{1}{2}$	0	$\frac{1}{2}$	1
$f(x)$	$\frac{1}{2}$	$\frac{4}{7}$	$\frac{2}{3}$	$\frac{4}{5}$	1

(b) This displacement s, measured in meters, of an object moving in a straight line at time t, measured in seconds, is given by the table below. Estimate the instantaneous velocity at $t=6$ seconds.

t (seconds)	0	2	4	6	8
s (meters)	1	6	13	22	33

Answers

1. (a) 0.2
(b) i. 6
ii. 9
iii. DNE, different limits from each side

2 (a) 0
(b) DNE, two different directions
(c) 4
(d) 1
(e) 1
(f) DNE, different limits from each side
(g) -5
(h) 2
(i) $-\infty$
(j) DNE, different limits from each side
3. (a) 3
(b) 0
(c) DNE, different limits from each side
(d) 2
(e) ∞
(f) $-\infty$
(g) $x=0 ; x=2$
(h) The function f is discontinuous at -3 (because limit DNE); at 0 (because limit DNE); at 2 (limit DNE); and at 4 (limit not equal to function value). The function is left-continuous at -3 and rightcontinuous at 2.
4. (a) continuous everywhere
(b) discontinuous at $x=2$ (removable)
(c) discontinuous at $x=2$ (nonremovable)
(d) $x=1$ (nonremovable)
(e) continuous everywhere
(f) $x=-2$ (nonremovable), $x=1$ (removable)
5. The answer is in working the problem.
6. various correct answers
7. (a) v.a.: $x=-3$
(b) v.a.: $x=2, x=-2$
(c) no v.a.
8. (a) -2
(b) $-80 \mathrm{ft} / \mathrm{sec}$
9. (a) $8 / 35$
(b) $5 \mathrm{~m} / \mathrm{sec}$

