Review for Test I MATH 1501

1. (a) Complete the following table for $f(x) = \frac{\ln(x+5) - \ln 5}{x}$.

x	-0.1	-0.01	-0.001	0.001	0.01	0.1
f(x)						

Based on the evidence above, $\lim_{x \to 0} \frac{f(x+5) - f(5)}{x} = \lim_{x \to 0} \frac{\ln(x+5) - \ln 5}{x} = \underline{\qquad}.$

(b) Use the table below to find the following limits.

x	2	2.5	2.9	2.99	\rightarrow	3	Ļ	3.01	3.1	3.5	4
f(x)	7	6.25	6.125	6.0625	\rightarrow	?	\leftarrow	9.1026	9.283	9.67	10
i. $\lim_{x \to 3^-} f(x)$ ii. $\lim_{x \to 3^+} f(x)$											
iii.	$\lim_{x\to 3} j$	f(x)									

- 2. Find the indicated limit or state it does not exist. If it does not exist, tell why. Use $-\infty$ and ∞ as appropriate.
 - (a) $\lim_{x \to 1} \frac{x^2 1}{x + 1}$ (b) $\lim_{x \to 0} \frac{\cos x}{x}$
 - (c) $\lim_{x \to 4} \frac{x-4}{\sqrt{x}-2}$ (d) $\lim_{x \to \frac{1}{2}} [4x]$ (Hint: Rationalize the denominator.) (d) $\lim_{x \to \frac{1}{2}} [x]$ is the greatest integer function.)
 - (e) $\lim_{x \to 1^{-}} f(x)$ where $f(x) = \begin{cases} x^3 & \text{if } x < -1 \\ x & \text{if } -1 < x < 1 \\ 1 x & \text{if } x \ge 1 \end{cases}$

(f)
$$\lim_{x \to 1} f(x) \text{ where } f(x) = \begin{cases} x^3 & \text{if } x < -1 \\ x & \text{if } -1 < x < 1 \\ 1 - x & \text{if } x \ge 1 \end{cases}$$

(g)
$$\lim_{x \to -1} (2x^2 + 6x - 1) \qquad \text{(h)} \quad \lim_{x \to 3} \frac{x^2 - 9}{x^2 - 3x}$$

(i)
$$\lim_{x \to 3^-} \frac{x + 1}{x^2 - 9} \qquad \text{(j)} \quad \lim_{x \to 3} \frac{x + 1}{x^2 - 9}$$

3. Use the graph of y = f(x) below to answer the following. If a limit does not exist, explain why.

- (g) State the equation(s) of any vertical asymptotes.
- (h) At what numbers is *f* discontinuous? Explain using the definition of continuity. Also, at what numbers (if any) is *f* right- or left-continuous?

- 4. Determine at what points, if any, the following functions are discontinuous. Classify any points of discontinuity as removable or nonremovable.
 - (a) $f(x) = 4x^2 2x + 12$ (b) $g(x) = \frac{x^{3-8}}{x-2}$ (c) $f(x) = \begin{cases} x & \text{if } x < 0\\ x^2 & \text{if } 0 \le x \le 2\\ 2 - x & \text{if } x > 2 \end{cases}$ (d) $f(x) = \frac{1}{x-1}$ (e) $f(x) = \frac{x}{x^2+1}$ (f) $f(x) = \frac{x-1}{x^2+x-2}$
- 5. Use the Intermediate Value Theorem to show that the equation $x^5 4x^3 3x + 1 = 0$ has at least one solution between x = 2 and x = 3.
- 6. Sketch the graph of a function that satisfies all the following conditions.
 - Its domain is [0, 6]
 - f(0) = f(2) = f(4) = f(6) = 2
 - f is continuous except at x = 2.
 - $\lim_{x \to 2^-} f(x) = 1$ and $\lim_{x \to 2^+} f(x) = 2$
- 7. Identify any vertical asymptotes of the graphs of the following functions. Indicate the limit from each side of a vertical asymptote.
 - (a) $f(x) = \frac{1}{(x+3)^4}$ (b) $f(x) = \frac{4x^2}{4-x^2}$ (c) $f(x) = \frac{-4x}{x^2+4}$
- 8. (a) The point P(1, -3) lies on the curve $f(x) = x^2 5x + 1$. Find the slope of the secant line PQ where Q is the point on the graph where x = 2.
 - (b) A ball is thrown straight upward with an initial velocity of 48 ft/sec

from the edge of a building 196 feet tall. Its height, in feet, above the ground after *t* seconds is given by $f(t) = 196 + 48t - 16t^2$. Using the definition, find the **average velocity** over the time interval [3, 5].

9. (a) The table below gives the values of a function f at certain values of x. Estimate the slope of the **tangent line** at x = 0.

x	-1	$-\frac{1}{2}$	0	$\frac{1}{2}$	1
f(x)	$\frac{1}{2}$	$\frac{4}{7}$	$\frac{2}{3}$	$\frac{4}{5}$	1

(b) This displacement *s*, measured in meters, of an object moving in a straight line at time *t*, measured in seconds, is given by the table below. Estimate the **instantaneous velocity** at t = 6 seconds.

t (seconds)	0	2	4	6	8
s (meters)	1	6	13	22	33

Answers

- 1. (a) 0.2
 - (b) i. 6
 ii. 9
 iii. DNE, different limits from each side
- 2 (a) 0
 - (b) DNE, two different directions
 - (c) 4
 - (d) 1
 - (e) 1
 - (f) DNE, different limits from each side
 - (g) -5
 - (h) 2
 - (i) −∞

- (j) DNE, different limits from each side
- 3. (a) 3
 - (b) 0
 - (c) DNE, different limits from each side
 - (d) 2
 - (e) ∞
 - (f) −∞
 - (g) x = 0; x = 2
 - (h) The function f is discontinuous at -3 (because limit DNE); at 0 (because limit DNE); at 2 (limit DNE); and at 4 (limit not equal to function value). The function is left-continuous at -3 and right-continuous at 2.
- 4. (a) continuous everywhere
 - (b) discontinuous at x = 2 (removable)
 - (c) discontinuous at x = 2 (nonremovable)
 - (d) x = 1 (nonremovable)
 - (e) continuous everywhere
 - (f) x = -2 (nonremovable), x = 1 (removable)
- 5. The answer is in working the problem.
- 6. various correct answers
- 7. (a) v.a.: x = -3(b) v.a.: x = 2, x = -2(c) no v.a.
- 8. (a) -2 (b) -80 ft/sec
- 9. (a) 8/35 (b) 5 m/sec