
\qquad
\qquad

CHROMATIC NUMBER PROBLEM

\qquad

The question of determine the chromatic \qquad number of a graph is an NP-complete problem.

CONSIDERATIONS FOR HEURISTICS

1. A vertex of high degree is harder to color than a vertex of low degree.
2. Vertices with the same neighborhood should be colored alike.
3. Coloring many vertices with the same color is a good idea.

GENERIC SEQUENTIAL COLORING
 ALGORITHM

Algorithm 8.2.1 Generic Sequential Coloring Algorithm.

Input: Any ordering of the vertices of a graph G.
Output: A coloring of the vertices.
Method: Use the minimum available color

1. Assign color 1 to vertex v_{1}.
2. If $H_{i-1}=\left\langle v_{1}, v_{2}, \ldots, v_{i-1}\right\rangle$ has been colored with j colors, then assign v_{i} with color k, where $k \leq j+1$ is the minimum available color (according to some numerical ordering of the colors, say $1,2, \ldots, n$).

LARGEST FIRST HEURISTIC

- The largest first heuristic orders the vertices in descending order based on their degrees.
- The vertex of highest degree is colored first, the next highest second, and so forth in a greedy manner.
- In each case, the color selected is the smallest possible legal color.
- This heuristic provides a good bound on the chromatic number of small-order graphs

A THEOREM OF WELSH AND POWELL

Theorem 8.3.1 (Welsh and Powell): Let G be a graph with $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and where $\operatorname{deg} v_{i} \geq \operatorname{deg} v_{i+1}$ for $i=1, \ldots, n-1$. Then

$$
\chi(G) \leq \max _{i} \min \left\{i, \operatorname{deg} v_{i}+1\right\}
$$

$\chi(G) \leq \max _{i} \min \left\{i, \operatorname{deg} v_{i}+1\right\}$.
\qquad

SMALLEST LAST ALGORITHM

In the smallest last algorithm, the vertex ordering is as follows. Let G be a graph.

- Remove the vertex of lowest degree from G and place it last on the list of vertices.
- In the subgraph that remains, select the vertex of lowest degree and place it on the list.
- Repeat until there are no more vertices.
- Color the vertices sequentially (first in-last out) in a greedy manner

COLOR DEGREE

\qquad

The color degree of a vertex v is the number \qquad of colors used to color the vertices adjacent to v. \qquad
\qquad
\qquad
\qquad
\qquad

BRELAZ COLOR-DEGREE ALGORITHM

Algorithm 8.2.2 Brelaz Color-Degree Algorithm.

Input: A graph G.
Output: An approximate coloring of the vertices of G.
Method: Break ties based on the smallest color degree.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

BRELAZ COLOR-DEGREE ALGORITHM (CONCLUDED)

1. Order the vertices in decreasing order of degrees.
2. Color the vertex of largest degree with color 1.
3. Select a vertex with maximum color-degree. If there is a tie, chose any of these vertices of largest degree in the uncolored graph.
4. Color the vertex selected in step 3 with the least possible color.
5. If all vertices are colored, then stop;
else go to step 3.

A THEOREM ON ALGORITHM 8.3.2

\qquad

Theorem 8.3.2: If G is a 2-connected
bipartite graph of order at least 3, then the coloring obtained from Algorithm 8.3.2 determines the chromatic number for G.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

