
\qquad
\qquad

COLORING OF A GRAPH

\qquad
An assignment of colors to the vertices of a \qquad graph G (one color per vertex) so that adjacent vertices are assigned a different color is a \qquad (legal) coloring of G.

TERMINOLOGY RELATED TO COLORINGS

- In a given coloring of a graph G, the set of all of those vertices assigned the same color is called a color class.
- A coloring of G produces a partition of $V(G)$ into different color classes, and each of these color classes is an independent set of vertices.
- A coloring that uses n colors is called a \underline{n} coloring.
- A graph whose vertices can be colored with n or fewer colors is called \underline{n}-colorable.

CHROMATIC NUMBER

- The minimum number of colors in a coloring of G, where the minimum is taken over all colorings of G, is called the chromatic number of G and is denoted by $\chi(G)$.
- If G is a graph for which $\chi(G)=n$, then we say G is \underline{n}-chromatic.

CHROMATIC NUMBER FOR SOME COMMON GRAPHS

- $\chi\left(C_{2 p}\right)=2$
- $\chi\left(C_{2 p+1}\right)=3$
- $\chi\left(K_{p}\right)=p$
- $\chi\left(K_{p_{1}, p_{2}, \ldots, p_{n}}\right)=n$
- In general, if G is a k-partite graph, $\chi(G) \leq$ k.

n-CRITICAL AND n-MINIMAL GRAPHS

- A graph G is critically \boldsymbol{n}-chromatic, or simply $\underline{\boldsymbol{n}}$ critical (if the context of coloring is clear) if $\chi(G)=n$ and $\chi(G-x)=n-1$ for every $x \in$ $V(G)$.
- A graph G is minimally \boldsymbol{n}-chromatic, or simply n-minimal (if the context of coloring is clear) if $\chi(G)=n$ and $\chi(G-e)=n-1$ for every $e \in$ $E(G)$.

NOTE: Every graph contains an n-critical subgraph and an n-minimal subgraph. (Just remove vertices and/or edges until you reach the desired subgraph.)
\qquad

MINIMUM DEGREE AND n-CRITICAL GRAPHS

Theorem 8.2.1: If G is a critically n-chromatic graph, then $\delta(G) \geq n-1$.

Corollary 8.2.1:

1. Every n-chromatics graph has at least n vertices of degree at least $n-1$.
2. For any graph $G, \chi(G) \leq \Delta(G)+1$.

S-COMPONENTS

Let S be a vertex cut set in a connected graph G. Let the components of $G-S$ have vertex sets $V_{1}, V_{2}, \ldots, V_{t}$.

- The subgraphs $G_{i}=\left\langle V_{i} \cup S\right\rangle$ are called the \underline{S}-components of G.
- Colorings of $G_{1}, G_{2}, \ldots, G_{t}$ agree on S if each vertex of S is assigned the same color in each of the colorings of the G_{i} $(i=1,2, \ldots, t)$.

CONNECTEDNESS AND n-CRITICAL GRAPHS

Theorem 8.2.2: If G is a critically n-chromatic graph ($n \geq 4$), then no vertex cut set induces a complete graph and, hence, G must be 2connected.

Consequence: If an n-critical graph has a 2 vertex cut set $\{u, v\}$, then u and v cannot be adjacent.

EDGE CONNECTEDNESS AND n CRITICAL GRAPHS

Theorem 8.2.3 (Dirac): Every critically n chromatic graph $(n \geq 2)$ is $n-1$ edge connected.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

A COROLLARY OF THEOREM 8.2.1
 AND 8.2.3

Corollary 8.2.2:

1. If G is a connected, n-minimal graph $(n \geq$ 2), then G is $(n-1)$-edge connected.
2. If G is n-critical or connected and n minimal, then $\delta(G) \geq n-1$.

COLOR-UNIQUE AND COLOR DISTINCT

\qquad

- If an n-critical graph G has a two vertex cut \qquad set $\{u, v\}$, we know u and v cannot be adjacent. \qquad
- An $S=\{u, v\}$-component H of G is colorunique if every $(n-1)$-coloring of H assigns the same color to both u and v.
- An $S=\{u, v\}$-component H of G is colordistinct if every $(n-1)$-coloring of H assigns different colors to both u and v.

ANOTHER THEOREM OF DIRAC

Theorem 8.2.4 (Dirac): Let G be an n-critical graph with a two vertex cut set $S=\{u, v\}$. Then:

1. $G=H_{1} \cup H_{2}$, where H_{1} is a color-unique S-component and H_{2} is a color-distinct S-component.
2. Both $H_{1}+u v$ and the graph obtained from H_{2} by identifying u and v are n critical.

A COROLLARY

Corollary 8.2.3: Let G be an n-critical graph with a two vertex cut set $\{u, v\}$. Then

$$
\operatorname{deg} u+\operatorname{deg} v \geq 3 n-5
$$

BROOKS' THEOREM

\qquad
Theorem 8.2.5 (Brooks): If G is a connected \qquad graph that is neither an odd cycle nor a complete graph, then $\chi(G) \leq \Delta(G)$. \qquad
\qquad
\qquad
\qquad
\qquad

