Section 8.2

Vertex Colorings

COLORING OF A GRAPH

An assignment of colors to the vertices of a graph G (one color per vertex) so that adjacent vertices are assigned a different color is a (legal) <u>coloring</u> of G.

TERMINOLOGY RELATED TO COLORINGS

- In a given coloring of a graph *G*, the set of all of those vertices assigned the same color is called a <u>color class</u>.
- A coloring of *G* produces a partition of *V*(*G*) into different color classes, and each of these color classes is an independent set of vertices.
- A coloring that uses *n* colors is called a <u>*n*</u>-<u>coloring</u>.
- A graph whose vertices can be colored with *n* or fewer colors is called <u>*n*-colorable</u>.

CHROMATIC NUMBER

- The minimum number of colors in a coloring of *G*, where the minimum is taken over all colorings of *G*, is called the <u>chromatic</u> <u>number</u> of *G* and is denoted by χ(*G*).
- If *G* is a graph for which $\chi(G) = n$, then we say *G* is *n*-chromatic.

CHROMATIC NUMBER FOR SOME COMMON GRAPHS

- $\chi(C_{2p}) = 2$
- $\chi(C_{2p+1}) = 3$
- $\chi(K_p) = p$
- $\chi(K_{p_1,p_2,\ldots,p_n}) = n$
- In general, if G is a k-partite graph, $\chi(G) \le k$.

n-CRITICAL AND n-MINIMAL GRAPHS

- A graph *G* is <u>critically *n*-chromatic</u>, or simply <u>*n*-critical</u> (if the context of coloring is clear) if $\chi(G) = n$ and $\chi(G x) = n 1$ for every $x \in V(G)$.
- A graph *G* is <u>minimally *n*-chromatic</u>, or simply <u>*n*-minimal</u> (if the context of coloring is clear) if $\chi(G) = n$ and $\chi(G e) = n 1$ for every $e \in E(G)$.

<u>NOTE</u>: Every graph contains an *n*-critical subgraph and an *n*-minimal subgraph. (Just remove vertices and/or edges until you reach the desired subgraph.)

MINIMUM DEGREE AND *n*-CRITICAL GRAPHS

Theorem 8.2.1: If *G* is a critically *n*-chromatic graph, then $\delta(G) \ge n - 1$.

Corollary 8.2.1:

- 1. Every *n*-chromatics graph has at least n vertices of degree at least n 1.
- 2. For any graph $G, \chi(G) \leq \Delta(G) + 1$.

S-COMPONENTS

Let *S* be a vertex cut set in a connected graph *G*. Let the components of G - S have vertex sets $V_1, V_2, ..., V_t$.

- The subgraphs $G_i = \langle V_i \cup S \rangle$ are called the <u>S-components</u> of *G*.
- Colorings of G₁, G₂, ..., G_t agree on S if each vertex of S is assigned the same color in each of the colorings of the G_i (i = 1,2, ..., t).

CONNECTEDNESS AND *n*-CRITICAL GRAPHS

Theorem 8.2.2: If *G* is a critically *n*-chromatic graph ($n \ge 4$), then no vertex cut set induces a complete graph and, hence, *G* must be 2-connected.

<u>Consequence</u>: If an *n*-critical graph has a 2-vertex cut set $\{u, v\}$, then u and v cannot be adjacent.

EDGE CONNECTEDNESS AND *n*-CRITICAL GRAPHS

Theorem 8.2.3 (Dirac): Every critically *n*-chromatic graph ($n \ge 2$) is n - 1 edge connected.

A COROLLARY OF THEOREM 8.2.1 AND 8.2.3

Corollary 8.2.2:

- 1. If *G* is a connected, *n*-minimal graph $(n \ge 2)$, then *G* is (n 1)-edge connected.
- 2. If *G* is *n*-critical or connected and *n*-minimal, then $\delta(G) \ge n 1$.

COLOR-UNIQUE AND COLOR DISTINCT

- If an *n*-critical graph *G* has a two vertex cut set {*u*, *v*}, we know *u* and *v* cannot be adjacent.
- An S = {u, v}-component H of G is <u>color-unique</u> if every (n 1)-coloring of H assigns the same color to both u and v.
- An S = {u, v}-component H of G is <u>color</u><u>distinct</u> if every (n − 1)-coloring of H assigns different colors to both u and v.

ANOTHER THEOREM OF DIRAC

<u>Theorem 8.2.4 (Dirac)</u>: Let *G* be an *n*-critical graph with a two vertex cut set $S = \{u, v\}$. Then:

- 1. $G = H_1 \cup H_2$, where H_1 is a color-unique *S*-component and H_2 is a color-distinct *S*-component.
- 2. Both $H_1 + uv$ and the graph obtained from H_2 by identifying u and v are ncritical.

A COROLLARY

Corollary 8.2.3: Let *G* be an *n*-critical graph with a two vertex cut set $\{u, v\}$. Then

 $\deg u + \deg v \ge 3n - 5.$

BROOKS' THEOREM

<u>Theorem 8.2.5 (Brooks)</u>: If *G* is a connected graph that is neither an odd cycle nor a complete graph, then $\chi(G) \leq \Delta(G)$.