
\qquad
\qquad

RELATION BETWEEN INDEPENDENT VERTICES AND COVERINGS

Proposition 8.1.1: In a graph $G=(V, E)$, a subset I of V is independent if and only if $V-I$ is a covering of G.

MAXIMUM AND MAXIMAL INDEPENDENT SETS

- An independent set in G is called a maximum independent set provided no other independent set in G has larger cardinality.
- An independent set in G is called maximal if it is contained in no larger independent set.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

INDEPENDENCE AND COVERING NUMBERS

- The number of vertices in a maximum independent set in G is called the independence number of G and is denoted by $\beta(G)$.
- The number of vertices in a minimum covering of G is called the covering number of G and is denoted by $\alpha(G)$.
- The edge independence number, denoted $\beta_{1}(G)$, is the size of a maximum matching in G.
- The edge covering number, denoted by $\alpha_{1}(G)$, is the minimum size of a set L of edges with the property that every vertex is an end vertex of some edge in L.

RELATIONSHIP BETWEEN INDEPENDENCE AND COVERING NUMBERS

Theorem 8.1.1 (Gallai's Theorem): If G is a graph of order p with $\delta(G)>0$, then

$$
\begin{gathered}
\alpha(G)+\beta(G)=p \text { and } \\
\alpha_{1}(G)+\beta_{1}(G)=p .
\end{gathered}
$$

BIPARTITE GRAPHS

Theorem 8.1.2: If G is a bipartite graph with $\delta(G)>0$, then $\beta(G)=\alpha_{1}(G)$.
\qquad

BIPARTITE GRAPHS Theorem 8.1.2: If G is a bipartite graph with $\delta(G)>0$, then $\beta(G)=\alpha_{1}(G)$.

