Section 8.1

Vertex Independence and Coverings

RELATION BETWEEN INDEPENDENT VERTICES AND COVERINGS

Proposition 8.1.1: In a graph G = (V, E), a subset *I* of *V* is independent if and only if V - I is a covering of *G*.

MAXIMUM AND MAXIMAL INDEPENDENT SETS

- An independent set in *G* is called a <u>maximum</u> independent set provided no other independent set in *G* has larger cardinality.
- An independent set in *G* is called **maximal** if it is contained in no larger independent set.

INDEPENDENCE AND COVERING NUMBERS

- The number of vertices in a maximum independent set in *G* is called the <u>independence number</u> of *G* and is denoted by β(*G*).
- The number of vertices in a minimum covering of *G* is called the <u>covering number</u> of *G* and is denoted by α(*G*).
- The <u>edge independence number</u>, denoted $\beta_1(G)$, is the size of a maximum matching in *G*.
- The <u>edge covering number</u>, denoted by *α*₁(*G*), is the minimum size of a set *L* of edges with the property that every vertex is an end vertex of some edge in *L*.

RELATIONSHIP BETWEEN INDEPENDENCE AND COVERING NUMBERS

Theorem 8.1.1 (Gallai's Theorem): If *G* is a graph of order *p* with $\delta(G) > 0$, then

 $\alpha(G) + \beta(G) = p$ and

 $\alpha_1(G)+\beta_1(G)=p.$

BIPARTITE GRAPHS

Theorem 8.1.2: If *G* is a bipartite graph with $\delta(G) > 0$, then $\beta(G) = \alpha_1(G)$.