Section 7.1

Matchings and Bipartite Graphs

MATCHINGS

\qquad

- Two distinct edges are independent if they \qquad are not adjacent.
- A set of pairwise independent edges is called a matching.
- In a graph G, a matching of maximum cardinality is called a maximum matching and its cardinality is denoted by $\beta_{1}(G)$.
- A matching that pairs all the vertices in a graph is called a perfect matching.

TERMINOLOGY

- An edge is said to be weak with respect to a matching \boldsymbol{M} if it is not in the matching. \qquad
- An vertex is said to be weak with respect to a matching \boldsymbol{M} if it is only adjacent to weak edges.
- An \underline{M}-alternating path in a graph G is a path
\qquad whose edges are alternately in a matching M and not in M (or conversely).
- An \underline{M}-augmenting path is an alternating path whose end vertices are both weak with respect to M. Thus, an M-augmenting path both begins and ends with a weak edge.

A LEMMA

Lemma 7.1.1: Let M_{1} and M_{2} be two matchings in a graph G. Then each component of the spanning subgraph H with edge set

$$
E(H)=\left(M_{1}-M_{2}\right) \cup\left(M_{2}-M_{1}\right)
$$

is one of the following types:

1. An isolated vertex.
2. An even cycle with edges alternately in M_{1} and M_{2}.
3. A path whose edges are alternately in M_{1} and M_{2} and such that each end vertex of the path is weak with respect to exactly one of M_{1} and M_{2}.

BERGE'S CHARACTERIZATION OF MAXIMUM MATCHINGS

Theorem 7.1.1 (Berge): A matching M in a graph G is maximum if and only if there exists no M-augmenting path in G.

A SET MATCHED UNDER A MATCHING

Given a matching M, we say that a set S is
\qquad matched under \boldsymbol{M} if every vertex of S is incident to an edge in M.
\qquad
\qquad
\qquad
\qquad
\qquad

HALL'S THEOREM

Theorem 7.1.2 (Hall): Let $G=(X \cup Y, E)$ be a bipartite graph. Then X can be matched to a subset of Y if and only if $|N(S)| \geq|S|$ for all subsets S of X.

Corollary 7.1.1: If G is a k-regular bipartite graph with $k>0$, then G has a perfect matching.

SOME SET TERMINOLOGY

- Given sets $S_{1}, S_{2}, \ldots, S_{k}$, we say any element $x_{i} \in S_{i}$ is a representative for the set S_{i} which contains it.
- Given sets $S_{1}, S_{2}, \ldots, S_{k}$, a system of distinct representatives or a traversal of the sets is a set of representatives $x_{i} \in S_{i}$ such that $x_{i} \neq x_{j}$ whenever $i \neq j$.

SETS AND GRAPHS

- Let vertex s_{i} represent the set S_{i}.
- Use distinct vertices u_{j} to represent each element x_{j} in each of the sets.
- Join vertices s_{i} and u_{j} if and only if the element x_{j} is in set S_{i}.
- NOTE: $N\left(s_{i}\right)=\left\{u_{j} \mid x_{j} \in S_{i}\right\}$. \qquad
- Finding a system of distinct representative (SDR) is equivalent to finding a matching of the
\qquad s_{i} 's into a subset of the u_{j} 's.

THE SDR THEOREM

The SDR Theorem: A collection
$S_{1}, S_{2}, \ldots, S_{k}, k \geq 1$ of finite nonempty sets has a system of distinct representatives if and only if the union of any t of these sets contains at least t elements for each $t,(1 \leq$ $t \leq k$).

THE MARRIAGE THEOREM (A VERSION OF HALL’S THEOREM)

The Marriage Theorem: Given a set of n men and n women, let each man make a list of the women he is willing to marry. Then each man can be married to a woman on the list if and only if for every value of $k(1 \leq k \leq n)$, the union of any k of the lists contains exactly k names.

EDGE COVERS

- A set C of vertices is said to cover the edges of a graph G (or be an edge cover) if every edge in G is incident to a vertex of C.
- The minimum cardinality of an edge cover in G is denoted by $\alpha(G)$.
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

THE KÖNIG-EGERVÁRY THEOREM

Theorem 7.1.3 (König, Egerváry): If $G=$ ($X \cup Y, E$) is a bipartite graph, then the maximum number of edges in a matching in G equals the minimum number vertices in a cover for $E(G)$; that is, $\beta_{1}(G)=\alpha(G)$.

NETWORKS AND MATCHINGS

\qquad
For a bipartite graph $G=(X \cup Y, E)$ we construct a network N_{G} corresponding to G as follows:
\qquad

- Orient all edges of G from X to Y.
- Insert a source s with arcs to all vertices of X.
- Insert a sink t with arcs from all vertices of Y.
- Assign a capacity of 1 to all the arcs out of s or into t.
- Assign a capacity of ∞ to all arcs from X to Y.

MATCHINGS AND FLOWS

Theorem 7.1.4: In a bipartite graph $G=$ ($X \cup Y, E$), the number of edges in a maximum matching equals the maximum flow in the network N_{G}.

