Section 6.3

A Planarity Algorithm

PIECES OF A GRAPH

- If $G_{1}=\left(V_{1}, E_{1}\right)$ is a subgraph of $G=(V, E)$, then a piece of G relative to G_{1} is either an edge $e=u v$ where $e \notin E_{1}$ and $u, v \in V\left(G_{1}\right)$ or a connected component of $\left(G-G_{1}\right)$ plus any edges incident to vertices of this component.
- For any piece P relative to G_{1}, the vertices of P in G_{1} are called contact vertices.
- If a piece has two or more contact vertices, it is called a segment. \qquad
- Two segments are incompatible if when placed in the same region of the plane determined by a cycle C, at least two of their edges cross. Note that when embedded C divides the plane into two regions, one interior to C, the other exterior.

PRELIMINARY TEST TO SIMPLIFY FINDING A PLANAR EMBEDDING

1. If $|E|>3 p-6$, then the graph must be nonplanar.
2. If the graph is disconnected, consider each component separately.
3. If the graph contains a cut vertex, then it is clearly planar if and only if each of the blocks is planar. Thus, we can limit our attention to 2-connected graphs.
4. Loops and multiple edges change nothing; hence, we need only consider graphs.
5. A vertex of degree 2 can certainly be replaced by an edge joining its neighbors. This contraction of all vertices of degree 2 constructs a homeomorphic graph with the smallest number of vertices. Certainly, a graph is planar if and only if the contraction is planar.

G-ADMISSIBLE

Let \widehat{H} be a plane embedding of a subgraph H of G. If there exists a plane embedding of G (say \widehat{G}) such that $\widehat{H} \subseteq \widehat{G}$, then \widehat{H} is said to be \underline{G} -
\qquad admissible.

SEGMENTS AND SUBGRAPHS

\qquad

- Let S be any segment of G relative to a subgraph H. S can be drawn in region r of \widehat{H} provided all the contact vertices of S lie in the boundary of r.
- We can extend the embedding of \hat{H} to include at least part of S.

STRATEGY OF THE DEMOUCRON, MALGRANGE, AND PERTUISET ALG.

- Find a sequence of subgraphs
$\widehat{H}_{1}, \widehat{H}_{2}, \ldots, \widehat{H}_{|E|-p+2}=G$ such that $H_{i} \subset H_{i+1}$ and such that \widehat{H}_{i} is G-admissible (if possible).
- We either construct a plane embedding of G (if one is possible) or discover some segment S which cannot be compatibly embedded in any region.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

SOME NOTATION

Given a plane embedded subgraph \widehat{H}_{i}, for each segment S, the set $R\left(S, \widehat{H}_{i}\right)$ is defined to be the set regions in which S can be compatibly embedded in \widehat{H}_{i}.

DMP PLANARITY ALGORITHM

\qquad

Algorithm 6.3.1 DMP Planarity Algorithm
\qquad
Input: A preprocessed block (after applying tests 1-5).
Output: The fact that the graph is planar or nonplanar.
Method: Look for a sequence of admissible embeddings beginning with some cycle C.

DMP ALGORITHM (CONCLUDED)

1. Find a cycle C and a planar embedding of C as the first subgraph \widehat{H}_{1}. Set $i \leftarrow 1$ and $r \leftarrow 2$.
2. If $r=|E|-p+2$,
then stop;
else determine all segments S of \widehat{H}_{i} in G and for each segment S determine $R\left(S, \widehat{H}_{i}\right)$.
3. If there exists a segment S with $R\left(S, \widehat{H}_{i}\right)=\emptyset$,
then stop and say G is nonplanar;
else if there exists a segment S such that $\left|R\left(S, \widehat{H}_{i}\right)\right|=1$,
then let $\{R\}=R\left(S, \widehat{H}_{i}\right)$;
else let S be any segment and R be any region in $R\left(S, \widehat{H}_{i}\right)$.
4. Choose a path P in S connecting two contact vertices. Set $H_{i+1}=$ $H_{1} \cup P$ to obtain the embedding \widehat{H}_{i+1} with P placed in R.
5. Set $i \leftarrow i+1, r \leftarrow r+1$ and go to step 2 .
