
8/7/2015

1

Section 5.6

The Traveling Salesman Problem

THE TRAVELING SALESMAN PROBLEM

Consider	the	dilemma	of	a	traveling	salesman.		
He	must	visit	each	city	in	his	region	and	return	
to	his	home	office	on	a	regular	basis.		He	seeks	a	
route	that	allows	him	to	visit	each	city	at	least	
once	(exactly	once	would	be	even	better)	and	
return	home,	with	the	added	property	that	this	
route	covers	the	least	distance.		Clearly,	a	
weighted	graph	can	be	used	to	model	the	
possible	routes.		Since	we	can	insert	edges	with	
infinite	distances,	we	can	also	restrict	our	
attention	to	complete	graphs.

NOTES ON TSP

• The	traveling	salesman	problem	is	NP‐complete.

• Approximate	algorithms	are	used	with	heuristics	to	
try	to	make	some	gains.



8/7/2015

2

THE NEAREST NEIGHBOR APPROACH

• The	nearest	neighbor approach	begins	with	a	
single	vertex,	adds	the	edge	of	minimum	
distance,	and	continues	to	build	from	either	
end	of	the	path	by	repeatedly	taking	the	
nearest	neighbor.

• Unfortunately,	in	the	nearest	neighbor	
approach,	to	close	the	path	to	a	cycle	is	often	
expensive.		Many	short	edges	can	be	ignored	
this	way	as	well.

SHORTEST INSERTION HEURISTIC
• The	shortest	insertion	heuristic begins	with	some	short	

cycle	and	expands	this	cycle	by	inserting	the	vertex	that	
causes	the	length	of	the	cycle	to	increase	the	least.

• Difficulties	can	arise.

• Arbitrarily	weighted	graphs	need	not	satisfy	the	
“reasonable	rules”	of	distance.		That	is,	the	triangle	
inequality	need	not	apply.

• If	the	triangle	inequality	does	hold	some	progress	can	be	
made.

• In	the	following	algorithm,	we	assume	a	single	vertex	and	
a	 are	(degenerate)	cycles.

SHORTEST INSERTION ALGORITHM

Algorithm	5.6.1		Shortest	Insertion	Algorithm.

Input: A	weighted	graph	 , satisfying	the	
triangle	inequality.

Output: A	hamiltonian	cycle	 that	approximated	the	
salesman	cycle.



8/7/2015

3

SHORTEST INSERTION ALGORITHM 
(CONCLUDED)

1. Select	any	vertex	and	consider	it	a	1‐cycle	 of	
.		Set	 ← 1.

2. If	 ,	then	halt	since	 is	the	desired	
cycle;
else	if	 has	been	selected	(1 ),	then	
find	a	vertex	 not	on	 that	is	closest	to	a	
consecutive	pair	of	vertices	 and	 of	 .

3. Let	 be	formed	by	inserting	 between	
and	 on	 and	go	to	step	2.


