Section 5.4

Forbidden Families

F-FREE GRAPHS

- If F = {H₁, H₂, ..., H_k} is a family of graphs, we say that G is <u>F-free</u> if G does not contain any of the graphs in the set F as induced subgraphs.
- If *F* is a single graph *H*, we simply say *G* is *H*-free.

THE GRAPHS Z_1 and N

- We define $Z_1 = K_{1,3} + e$.
- We define the graph *N* to be *C*₃ with one edge and vertex attached to each vertex of *C*₃. *N* is called the "net."

A HAMILTONIAN RESULT AND FORBIDDEN FAMILIES

<u>Theorem 5.4.1</u>: If *G* is a 2-connected $\{K_{1,3}, Z_1\}$ -free graph, then *G* is hamiltonian.

ANOTHER HAMILTONIAN RESULT AND FORBIDDEN FAMILIES

<u>Theorem 5.4.2</u>: If *G* is

- 1. connected and $\{K_{1,3}, N\}$ -free, then *G* is traceable.
- 2. 2-connected and $\{K_{1,3}, N\}$ -free, then *G* is hamiltonian.

Corollary 5.4.1: If *G* is a 2-connected graph that is $\{R, S\}$ -free where $R = K_{1,3}$ and *S* is any one of $N, C_3, Z_1, B, P_4, P_3, K_2$ or K_1 , then *G* is hamiltonian.

MORE HAMILTONIAN RESULT AND FORBIDDEN FAMILIES

<u>Theorem 5.4.3</u>: If *G* is a 2-connected graph and *G* is

- 1. $\{K_{1,3}, P_6\}$ -free
- 2. $\{K_{1,3}, W\}$ -free, or
- 3. $\{K_{1,3}, Z_3\}$ -free and of order $p \ge 10$.

then G is hamiltonian.

Theorem 5.4.4: Let *R* and *S* be connected graphs $(R, S \neq P_3)$ and *G* a 2-connected graph of order $n \ge 10$. Then *G* is $\{R, S\}$ -free implies *G* is hamiltonian if and only if $R = K_{1,3}$ and *S* is one of the graphs $C_3, P_4, P_5, P_6, Z_1, Z_2, Z_3, B, N$, or *W*.