Section 5.3

Related Hamiltonian-like Properties

TRACEABLE AND HAMILTONIAN CONNECTED GRAPHS

- A graph is **traceable** if it contains a hamiltonian path.
- A graph *G* is called an **homogenously traceable** if there is a hamiltonian path beginning at every vertex of *G*.
- A graph *G* is called <u>hypohamiltonian</u> if *G* is not hamiltonian but *G* – *v* is hamiltonian for every vertex *v*.
- We say that *G* is **hamiltonian connected** if every two vertices of *G* are joined by a hamiltonian path.

(p + 1)-CLOSURE

For a (p, q) graph G, let the (p + 1)-closure, denoted by $CL_{p+1}(G)$, be the graph obtained from G by recursively joining pairs of nonadjacent vertices whose degree sum is at least p + 1.

A THEOREM ON HAMILTONIAN CONNECTEDNESS

Theorem 5.3.1 (Bondy and Chvátal): Let *G* be a graph of order *p*. If $CL_{p+1}(G)$ is complete, then *G* is hamiltonian connected.

TWO COROLLARIES

Corollary 5.3.1: If *G* is a graph of order *p* such that for every pair of distinct nonadjacent vertices *x* and *y* in *G*, $deg x + deg y \ge p + 1$, then *G* is hamiltonian connected.

Corollary 5.3.2: If *G* is a graph of order *p* such that, $deg \ x \ge \frac{p+1}{2}$, then *G* is hamiltonian connected.

PANCONNECTED

A connected graph G = (V, E) is said to be **panconnected** if for each pair of distinct vertices *x* and *y*, there exists and x - y path of length *l*, for each *l* satisfying $d(x, y) \le l \le |V| - 1$.

Theorem 5.3.2: If *G* is a graph of order $p \ge 4$ such that for every vertex $x \in V(G)$, $deg \ x \ge \frac{p+2}{2}$, then *G* is panconnected.

PANCYCLIC

A graph *G* of order *p* is **pancyclic** if it contains a cycle of every length *l*, $(3 \le l \le p)$. *G* is **vertex pancyclic** if each vertex of *G* lies on a cycle of each length *l*, $(3 \le l \le p)$.

Theorem 5.3.3: If *G* is a hamiltonian (p,q) graph with $q \ge \frac{p^2}{4}$, then either *G* is pancyclic or *p* is even and *G* is isomorphic to $K_{p/2, p/2}$.