Section 5.2

Adjacency Conditions for Hamiltonian Graphs

HAMILTONIAN GRAPHS

- A graph is **hamiltonian** if it has a cycle containing all the vertices of the graph.
- The cycle itself is called an <u>hamiltonian</u> cycle.
- A path containing every vertex of a graph is called an **hamiltonian path**.

COMMENT

The problem of finding a hamiltonian cycle is NP-complete, and no practical characterization for hamiltonian graphs has been found.

ORE'S THEOREM

Theorem 5.2.1 (Ore): If *G* is a graph of order $p \ge 3$ such that for all pairs of distinct nonadjacent vertices *x* and *y*, $deg x + deg y \ge p$, then *G* is hamiltonian.

A COROLLARY

<u>Corollary 5.2.1 (Dirac)</u>: If *G* is a graph of order $p \ge 3$ such that $\delta \ge \frac{p}{2}$, then *G* is hamiltonian.

NOTE: Dirac actually proved this before Ore proved Theorem 5.2.1. As a result, this corollary is sometimes called "Dirac's Theorem."

A COROLLARY

<u>Corollary</u>: If *G* is a graph of order $p \ge 3$ such that for all pairs of distinct nonadjacent vertices *x* and *y*, $deg x + deg y \ge p - 1$, then *G* contains a hamiltonian path.

A THEOREM OF BONDY AND CHVÁTAL

Theorem 5.2.2 (Bondy and Chvátal): Let x and y be nonadjacent vertices of a graph G of order p such that $deg x + deg y \ge p$. Then G + xy is hamiltonian if and only if G is hamiltonian.

CLOSURE OF A GRAPH

The **closure** of a graph G, denoted by CL(G), is the graph obtained from G by recursively joining pairs of nonadjacent vertices whose degree sum is at least p until no such pair remains.

CLOSURE IS WELL DEFINED

Theorem 5.2.3: If G_1 and G_2 are two graphs obtained by recursively joining pairs of nonadjacent vertices whose degree sum is at least p until no such pair remains, then $G_1 = G_2$; that is, CL(G) is well defined.

THE CLOSURE OF A GRAPH AND HAMILTONIAN GRAPHS

Theorem 5.2.4: A graph is hamiltonian if and only if *CL*(*G*) is hamiltonian.

ORE-TYPE GRAPHS

A graph *G* is said to be an <u>Ore-type</u> graph if $deg x + deg y \ge |V(G)|$ for all nonadjacent pairs of vertices *x* and *y*.

TWO OBSERVATIONS ABOUT ORE-TYPE GRAPHS

Observation 1: In any Ore-type graph G, the vertices of any maximal path can be permuted to form a cycle C.

Observation 2: In any Ore-type graph *G*, if *C* is any cycle (not necessarily hamiltonian) in *G* and $x \notin V(C)$, then there is a path that contains *x* and all the vertices of *G*.

ALBERTSON'S ALGORITHM

Algorithm 5.2.1 Albertson's Algorithm.

Input:An Ore-type graph G.Output:A hamiltonian cycle in G.Method:Use of observations 1 and 2.

ALBERTSON'S ALG. (CONCLUDED)

- 1. Create a maximal path $P: u, ..., x_k, ..., v$.
- 2. Repeat while $|V(P)| \neq |V(G)|$: If u is adjacent to v, then set C: u, ..., v, u; else find a k such that u is adjacent to x_{k+1} and v is adjacent to x_k . Set C = $u, x_{k+1}, x_{k+2}, ..., v, x_k, x_{k-1}, ..., x_1, u$.
- 3. Find $x \in V(G C)$, and create P^* , a path containing x and all of C. Set P equal to a maximal path containing P^* .
- 4. endwhile

SOME THEOREMS ON HAMILTONICITY

Theorem 5.2.5: If *G* is a 2-connected graph such that for every pair of nonadjacent vertices *x* and *y*,

$$|N(x) \cup N(y)| \ge \frac{2p-1}{3},$$

then G is hamiltonian.

Theorem 5.2.6: Let *G* be a *k*-connected graph of order $n \ge 3$. Suppose there exists some $t \le k$ such that for every set *S* of *t* mutually nonadjacent vertices, $|N(S)| > \frac{t(n-1)}{t+1}$;

then G is hamiltonian.

SOME THEOREMS ON HAMILTONICITY (CONTINUED)

Theorem 5.2.7: If *G* is a 2-connected graph of sufficiently larger order *n* and if for each pair of arbitrary vertices $S = \{a, b\}$ we have that

 $|N(S)| \ge \frac{n}{2},$

then G is hamiltonian.