

EULERIAN GRAPHS

- A graph (or multigraph) is <u>eulerian</u> if it has a circuit containing all the edges of the graph.
- The circuit itself is called an <u>eulerian</u> <u>circuit</u>.
- A trail containing every edge of a graph is called an <u>eulerian trail</u>.

EQUIVALENT STATEMENTS FOR EULERIAN GRAPHS

Theorem 5.1.1: The following statements are equivalent for a connected graph *G*.

- 1. The graph *G* contains an eulerian circuit.
- 2. Each vertex of *G* has even degree.
- 3. The edge set of *G* can be partitioned into cycles.

TWO COROLLARIES

<u>Corollary 5.1.1</u>: A connected graph *G* contains an eulerian trail if and only if at most two vertices of *G* have odd degree.

<u>Corollary 5.1.2</u>: Let G = (V, E) be a connected graph with 2k (k > 0) vertices of odd degree. Then *E* can be partitioned into exactly *k* open trails.

FLEURY'S ALGORITHM

Algorithm 5.1.1 Fleury's Algorithm.

Input: A connected (p,q) graph G = (V, E).

Output: An eulerian circuit *C* of *G*.

Method: Expand a trail C_i while avoiding bridges in $G - C_i$, until no other choice remains.

FLEURY'S ALGORITHM (CONCLUDED)

- 1. Choose any $v_0 \in V$ and let $C_0 = v_0$ and $i \leftarrow 0$.
- 2. Suppose that the trail $C_i = v_0, e_1, v_1, \dots, e_i, v_i$ has already been chosen:
 - a. At v_i , choose any edge e_{i+1} that is not on C_i and that is not a bridge of the graph $G_i = G E(C_i)$, unless there is no other choice.
 - b. Define $C_{i+1} = C_i, e_{i+1}, v_{i+1}$.
 - c. Let $i \leftarrow i + 1$.

```
3. If i = |E|
```

then halt since $C = C_i$ is the desired circuit; else go to step 2.

FLEURY'S ALGORITHM AND EULERIAN CIRCUITS

Theorem 5.1.3: If *G* is eulerian, then any circuit produced by Fleury's Algorithm is eulerian.

HIERHOLZER'S ALGORITHM

Algorithm 5.1.2 Hierholzer's Algorithm.

```
Input: A connected graph G = (V, E), each of whose vertices has even degree.
```

Output: An eulerian circuit *C* of *G*.

Method: Patching together of circuits.

HIERHOLZER'S ALGORITHM (CONCLUDED)

- Choose v ∈ V. Produce a circuit C₀ beginning with v by traversing, at each step, any edge not yet included in the circuit. Set i ← 0.
- 2. If $E(C_i) = E(G);$
 - then halt since $C = C_i$ is the eulerian circuit; else choose a vertex v_i on C_i that is incident to an edge not on C_i . Now build a circuit C_i^* beginning at the vertex v_i in the graph $G - E(C_i)$. (Hence, C_i^* also contains v_i .)
- 3. Build a circuit C_{i+1} containing the edges of C_i and C_i^* by starting at v_{i-1} , traversing C_i until reaching v_i , then traversing C_i^* completely (hence, finishing at v_i) and the completing the traversal of C_i . Now set $i \leftarrow i + 1$ and go to step 2.