
\qquad
\qquad

TWO SIMILAR RESULTS

Menger's Theorem relates the maximum number of disjoint paths and the minimum number of vertices in a separating set. The Max Flow-Min Cut Theorem relates the maximum flow and the minimum capacity of a cut. Both involve the equality of two quantities, one of which is a maximum and the \qquad other a minimum. The Max Flow-Min Cut Theorem can be used to prove Menger's Theorem.

MENGER'S THEOREM

\qquad

Theorem 4.6.1 (Menger's Theorem): For \qquad distinct nonadjacent vertices u and w in a graph G, the maximum number of pairwise \qquad internally disjoint $u-w$ paths equals the minimum number of vertices in a $u-w$ separating set.

EDGE VERSION OF MENGER'S

THEOREM

Theorem 4.6.2: In a graph G, the maximum number of edge disjoint $u-v$ paths equals the number of edges in a $u-v$ separating set.

