
9/17/2015

1

Section 3.6

Binary Trees

ROOTED AND LEVELED TREES
• All	trees	in	this	section	are	rooted.

• The	trees	will	also	be	leveled,	that	is,	the	root	ݎ will	
constitute	level	0,	the	neighbors	of	ݎ will	constitute	level	
1,	the	neighbors	of	the	vertices	on	level	1	that	have	not	yet	
been	placed	in	a	level	will	constitute	level	2,	etc.

• If	ݒ is	a	vertex	in	level	݇,	the	neighbors	of		ݒ in	level	݇ ൅ 1
are	called	the	children (or	descendants)	of	ݒ.

• The	neighbor	of	ݒ on	level	݇ െ 1 (if	it	exists)	is	called	the	
parent (or	father or	predecessor)	of	ݒ.

• The	height of	a	leveled	tree	is	the	length	of	a	longest	path	
from	the	root	to	a	leaf,	or	alternatively,	the	largest	level	
number	of	any	vertex.

BINARY TREES

• A	binary	tree is	a	rooted,	leveled	tree	in	
which	any	vertex	as	at	most	two	children.

• The	descendants	of	ݒ are	referred	to	as	the	
left	child and	right	child of	ݒ.

• Binary	trees	are	said	to	be	ordered because	
of	this	structure.

• If	every	vertex	of	a	binary	tree	has	either	
two	children	or	no	children,	then	we	say	it	is	
a	full binary	tree.



9/17/2015

2

DISTINCT BINARY TREES

Due	to	the	structure	imposed	in	designating	a	
distinction	between	the	left	and	right	child,	
we	obtain	distinct	binary	trees	when	
ordinary	graph	isomorphism	holds.

TRAVERSAL OF TREES
• In	order	to	recover	the	information	stored	in	
binary	tree,	we	must	visit	the	vertices	of	the	
tree	in	an	order	that	allows	us	to	retrieve	the	
information	and	understand	how	that	data	are	
related.

• This	process	is	a	called	a	tree	traversal.

• This	is	accomplished	with	the	aid	of	the	tree	
structure	and	a	particular	set	of	rules	for	
deciding	which	neighbor	to	visit	next.

INORDER TRAVERSAL
(AKA SYMMETRIC ORDER TRAVERSAL)

Algorithm	3.6.1		Inorder Traversal	of	a	Binary	Tree.

Input: A	binary	tree	ܶ ൌ ܸ, ܧ with	root	ݎ.

Output: An	ordering	of	the	vertices	of	ܶ (that	is,	the	data	
contained	within	these	vertices,	received	in	the	
order	of	the	vertices.)

Method: Here	“visit”	the	vertex	simply	means	perform	
the	operation	of	your	choice	on	the	data	
contained	in	the	vertices.



9/17/2015

3

PROCEDURE INORDER

Procedure	inorder ࢘

If	ܶ ് ∅,	then,

inorder(left	child	of	ݒ)

visit	the	present	vertex

inorder(right	child	of	ݒ)

end

COMMENT ON INORDER PROCEDURE

The	recursive	algorithm	3.6.1	performs	the	
following	at	each	vertex.

1. Go	to	the	left	child	if	possible.

2. Visit	the	vertex

3. Go	to	the	right	child	if	possible.

PREORDER AND POSTORDER
TRAVERSAL

• In	preorder	traversal,	we	visit	the	vertex,	
go	to	the	left	child,	and	then	go	to	the	right	
child.

• In	postorder traversal,	we	go	to	the	left	
child,	go	the	right	child,	and,	finally,	visit	the	
vertex.



9/17/2015

4

HUFFMAN CODING

A	Huffman	code	is	a	way	to	reduce	the	number	of	
bits	needed	to	store	characters	while	still	
maintaining	the	characters	in	the	message.		It	is	
very	useful	when	there	the	number	of	available	
characters	is	few,	their	frequencies	(or	
probabilities)	are	known	(or	at	least	
approximately	known),	and	there	is	a	large	string	
of	characters	to	store.		(An	example	would	be	from	
bioinformatics	with	DNA	sequences.)		The	data	is	
usually	encoded	in	the	form	of	a	binary	number	
(that	is,	a	sequence	of	0s	and	1s.)

IDEA BEHIND HUFFMAN CODE

The	main	idea	behind	the	Huffman	code	is	to	
use	fewer	bits	to	store	characters	that	occur	
frequently	and	use	more	bits	to	store	the	
characters	that	occur	less	frequently.

Huffman	code	uses	a	binary	tree	to	encode	and	
decode	the	string.		We	do	this	by	placing	a	
value	of	0	on	the	edge	from	any	vertex	to	its	
left	child	and	a	value	of	1	on	any	edge	from	a	
vertex	to	its	right	child.		Such	a	tree	is	called	a	
Huffman	tree.

CONSTRUCTION OF A HUFFMAN TREE

Algorithm	3.6.2		Construction	of	a	Huffman	Tree.

Input: Ordered	pairs	consisting	of	the	frequencies	 ௜݂ and	the	
characters	ܽ௜ corresponding	to	the	frequencies	in	
ascending	order	of	frequencies.		That	is,	

ଵ݂, ܽଵ , ଶ݂, ܽଶ , … ௡݂, ܽ௡ .

Output: An	Huffman	tree	with	leaves	corresponding	to	the	
ordered	pairs	above.

Method: From	a	collections	of	trees,	select	the	two	root	vertices	
corresponding	to	the	smallest	frequencies.		Then	insert	a	
new	vertex	and	make	the	two	selected	vertices	the	
children	of	this	new	vertex.		Return	this	tree	to	the	
collection	of	trees	and	repeat	this	process	until	only	one	
tree	remains.



9/17/2015

5

CONSTRUCTION OF A HUFFMAN TREE 
(CONTINUED)

1. If	݊ ൌ 2,	then	halt,	thereby	forming	the	tree:

ଵ݂, ܽଵ ଶ݂, ܽଶ

ଵ݂ ൅ ଶ݂,⋅	

0 1

CONSTRUCTION OF A HUFFMAN TREE 
(CONCLUDED)

2. If	݊ ൐ 2,	then	reorder	the	frequencies	so	that	
ଵ݂ and	 ଶ݂ are	the	smallest	frequencies.		Let	 ଵܶ
be	the	Huffman	tree	resulting	from	the	
algorithm	being	recursively	applied	to	the	
frequencies	 ଵ݂ ൅ ଶ݂, ଷ݂, … , ௡݂ and	let	 ଶܶ be	
the	Huffman	tree	that	results	from	calling	the	
algorithm	recursively	on	the	frequencies	
ሺ ଵ݂, ଶ݂ሻ.		Halt	the	algorithm	with	the	tree	that	
results	from	substituting	 ଶܶ for	some	leaf	of	
ଵܶ (which	has	value	 ଵ݂ ൅ ଶ݂).

WEIGHTED PATH LENGTH
The	weighted	path length	for	the	encoding	tree	is	
defined	to	be	

෍ ௜݂݈௜
ଵஸ௜ஸ௡

where	 ௜݂ is	the	frequency	of	the	݅th letter	and	݈௜ is	the	
length	of	the	path	from	the	root	in	the	Huffman	tree	
corresponding	to	the	݅th letter.

The	average	length	of	each	character	encoded	can	be	
obtained	by	taking	the	weighted	path	length	and	
dividing	by	∑ ௜݂

௡
௜ୀଵ (the	number	of	characters	being	

encoded).



9/17/2015

6

HUFFMAN TREES ARE “OPTIMAL”

Theorem	3.6.1: A	Huffman	tree	for	the	
frequencies	 ଵ݂, ଶ݂, … , ௡݂ has	minimum	weighted	
path	length	among	all	full	binary	trees	with	leaves	
ଵ݂, ଶ݂, … , ௡݂.

Theorem	3.6.2: If	ܿଵ, ܿଶ, … , ܿ௡ are	the	binary	codes	
assigned	by	Huffman’s	algorithm	to	the	characters	
with	frequencies	 ଵ݂, ଶ݂, … , ௡݂,	respectively,	and	if	

௜݂ ൏ ௝݂,	then	݈݄݁݊݃ݐ ܿ௜ ൒ ݄ݐ݈݃݊݁ ௝ܿ .


