Section 3.3

Counting Trees

IDENTICAL GRAPHS

Two graphs G_{1} and G_{2} are identical if $V\left(G_{1}\right)=$ $V\left(G_{2}\right)$ and $E\left(G_{1}\right)=E\left(G_{2}\right)$.

NUMBER OF NONIDENTICAL SPANNING TREES

Given a graph $G=(V, E)$ and let $V=$
$\{1,2, \ldots, p\}$. How many nonidentical spanning trees are there?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

CAYLEY'S TREE FORMULA

Theorem 3.3.1 (Caley's Tree Formula): The \qquad number of nonidentical spanning trees on p distinct vertices is p^{p-2}.

PRÜFER'S TREE TO SEQUENCE ALGORITHM

Input: A tree T, with vertices labeled $1,2, \ldots, n$.

1. Let $i \leftarrow 0$, and let $T_{0} \leftarrow T$.
2. Find the leaf on T_{i} with the smallest label an call it v.
3. Record in the sequence σ the label of v^{\prime} s neighbor.
4. Remove v from T_{i} to create a new tree T_{i+1}.
5. If $T_{k+1}=K_{2}$, then halt. Otherwise, $i \leftarrow i+1$ and go to step 2.

PRÜFER'S SEQUENCE TO TREE ALGORITHM

Input: A sequence $\sigma=a_{1}, a_{2}, \ldots, a_{p-2}$ of entries from the set $\{1,2, \ldots, p\}$.

1. Draw p vertices and label them $1,2, \ldots, p$. Let $S \leftarrow\{1,2, \ldots, p\}$.

Let $i \leftarrow 0$, let $\sigma_{0} \leftarrow \sigma$, and let $S_{0} \leftarrow S$.
3. Let j be the smallest number in S_{i} that does not appear in the sequence σ_{i}.
4. Place an edge between vertex j and the vertex whose label appears first in the sequence σ_{i}.
5. Remove the first number in the sequence σ_{i} to create a new sequence σ_{i+1}. Let $S_{i+1} \leftarrow S-\{j\}$.
6. If the sequence σ_{i+1} is empty, place an edge between the two vertices whose labels are in S_{i+1}. Otherwise, $i \leftarrow i+1$ and got to step 3.

DEGREE MATRIX

The $p \times p$ degree matrix $D=\left[d_{i j}\right]$ of a graph \qquad G is the matrix such that

$$
d_{i j}= \begin{cases}\operatorname{deg} v_{i} & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

THE MATRIX-TREE THEOREM

Theorem 3.3.2 (The Matrix-Tree

Theorem by Kirchhoff): Let G be a nontrivial graph with adjacency matrix A and degree matrix D. Then the number of nonidentical spanning trees of G is the value of any cofactor of $D-A$.

