

IDENTICAL GRAPHS

Two graphs G_1 and G_2 are **identical** if $V(G_1) = V(G_2)$ and $E(G_1) = E(G_2)$.

NUMBER OF NONIDENTICAL SPANNING TREES

Given a graph G = (V, E) and let $V = \{1, 2, ..., p\}$. How many nonidentical spanning trees are there?

CAYLEY'S TREE FORMULA

Theorem 3.3.1 (Caley's Tree Formula): The number of nonidentical spanning trees on p distinct vertices is p^{p-2} .

PRÜFER'S TREE TO SEQUENCE ALGORITHM

Input: A tree *T*, with vertices labeled 1, 2, ..., *n*.

- 1. Let $i \leftarrow 0$, and let $T_0 \leftarrow T$.
- 2. Find the leaf on *T_i* with the smallest label an call it *v*.
- 3. Record in the sequence σ the label of v's neighbor.
- 4. Remove v from T_i to create a new tree T_{i+1} .
- 5. If $T_{k+1} = K_2$, then halt. Otherwise, $i \leftarrow i + 1$ and go to step 2.

PRÜFER'S SEQUENCE TO TREE ALGORITHM

Input: A sequence $\sigma=a_1,a_2,\ldots,a_{p-2}$ of entries from the set $\{1,2,\ldots,p\}.$

- 1. Draw p vertices and label them $1,2,\ldots,p.$ Let $S \leftarrow \{1,2,\ldots,p\}.$
- 2. Let $i \leftarrow 0$, let $\sigma_0 \leftarrow \sigma$, and let $S_0 \leftarrow S$.
- 3. Let *j* be the smallest number in S_i that does not appear in the sequence σ_i .
- 4. Place an edge between vertex *j* and the vertex whose label appears first in the sequence σ_i .
- 5. Remove the first number in the sequence σ_i to create a new sequence σ_{i+1} . Let $S_{i+1} \leftarrow S \{j\}$.
- 6. If the sequence σ_{i+1} is empty, place an edge between the two vertices whose labels are in S_{i+1} . Otherwise, $i \leftarrow i + 1$ and got to step 3.

DEGREE MATRIX

The $p \times p$ degree matrix $D = [d_{ij}]$ of a graph G is the matrix such that

$$d_{i j} = \begin{cases} \deg v_i & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

THE MATRIX-TREE THEOREM

Theorem 3.3.2 (The Matrix-Tree Theorem by Kirchhoff): Let *G* be a nontrivial graph with adjacency matrix *A* and degree matrix *D*. Then the number of nonidentical spanning trees of *G* is the value of any cofactor of D - A.