Section 3.2

Minimum Weight Spanning Trees

KRUSKAL'S ALGORITHM

Algorithm 3.2.1 Kruskal's Algorithm.

Input: A connected weighted graph G = (V, E).

Output: A minimum weight spanning tree T = (V, E(T)).

Method: Find the next edge e of minimum weight w(e) that does not form a cycle with those already chosen.

KRUSKAL'S ALGORITHM (CONCLUDED)

1. Let $i \leftarrow 1$ and $T \leftarrow \emptyset$.

- 2. Choose an edge *e* of minimum weight such that $e \neq E(T)$ and such that $T \cup \{e\}$ is acyclic. If no such edge exists, then stop; else set $e_i \leftarrow e$ and $T \leftarrow T \cup \{e_i\}$.
- 3. Let $i \leftarrow i + 1$, and go to step 2.

KRUSKAL'S ALGORITHM PRODUCES A MINIMUM WEIGHT SPANNING TREE

Theorem 3.2.1: When Kruskal's algorithm halts, *T* induces a minimum weight spanning tree.

GREEDY ALGORITHMS

- A greedy algorithm is an algorithm that proceeds by selecting the choice that looks best at the moment.
- Kruskal's algorithm is greedy.
- Sometimes greedy algorithms can be arbitrarily bad.

A THEOREM ON MINIMUM WEIGHT SPANNING TREES

Theorem 3.2.2: Let G = (V, E) be a weighted graph. Let $U \subseteq V$ and let e have minimum weight among all the edges from U to V - U. Then there exists a minimum weight spanning tree that contains e.

PRIM'S ALGORTIHM

Algorithm 3.2.2 Prim's Algorithm.

- **Input:** A connected weighted graph G = (V, E)with $V = \{v_1, v_2, ..., v_n\}$.
- **Output:** A minimum weight spanning tree *T*.
- **Method:** Expand the tree *T* from $\{v_1\}$ using the minimum weight edge from among *T* to V V(T).

PRIM'S ALGORITHM (CONCLUDED)

- 1. Let $T \leftarrow \{v_1\}$.
- 2. Let e = tu be an edge of minimum weight joining a vertex t of T to a vertex u of V - V(T) and set $T \leftarrow T \cup \{e\}$
- 3. If |E(T)| = p 1 then halt, else go to step 2.