Section 3.1

Fundamental Properties of Trees

TREES

Recall, that a **tree** is a connect acyclic graph.

TWO CHARACTERIZATIONS OF TREES

Theorem 3.1.1: A graph *T* is a tree if and only if every two distinct vertices of *T* are joined by a unique path.

Theorem 3.1.2: A (p, q) graph *T* is a tree if and only *T* is connected and q = p - 1.

CHARACTERIZATIONS OF TREES

Theorem 3.1.3: The following are equivalent on a (p, q) graph T:

- 1. The graph T is a tree.
- 2. The graph *T* is connected and q = p 1.
- 3. Every pair of distinct vertices of *T* is joined by a unique path.
- 4. The graph *T* is acyclic and q = p 1.

VERTICES AND EDGES IN TREES

- In any tree of order p ≥ 3, any vertex of degree at least 2 is a cut vertex. There are at least two vertices of degree 1.
- The vertices of degree 1 in a tree are called <u>end</u> <u>vertices</u> or <u>leaves</u>. The remaining vertices are called <u>internal vertices</u>.
- Every edge in a tree is a bridge.

SPANNING TREES

- Every connected graph *G* contains a spanning subgraph that is a tree, called a **spanning tree**.
- A spanning tree that preserves the distance from v to each of the remaining vertices in G is said to be <u>distance preserving from v</u> or <u>v-distance preserving</u>.

DISTANCE PRESERVING TREES

Theorem 3.1.4: For every vertex *v* of a connected graph *G*, there exists a *v*-distance preserving tree.

MANY TREES EMBEDDED AS SUBGRAPHS

<u>Theorem 3.1.5</u>: Let *G* be a graph with $\delta(G) \ge m$ and let *T* be any tree of order m + 1. Then *T* is a subgraph of *G*.